Skip to main content
Log in

Effect of Sintering Temperature on the Magnetocaloric Effect of Ni-Mn-In/Tb-Dy-Fe Composites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, the (Ni50Mn34.75In15.25)0.9/(Tb0.3Dy0.7Fe1.92)0.1 composites were prepared by spark plasma sintering method, and the influence of different sintering temperatures on the magnetocaloric effect of the composites was studied. For the composite sintered at 923 K, the adiabatic temperature change at a 1.5-T magnetic field is as high as − 2.8 K, and the effective refrigeration capacity at a 5-T magnetic field reaches up to 190 Jkg−1. This is attributed to the fact that internal stresses generated by the magnetostriction of the Tb0.3Dy0.7Fe1.92 particles assist in the magnetic field-driven inverse martensitic transformation and reduce the critical field for phase transition. As the sintering temperature increases to 1023 K, the thermoelastic martensitic transformation characteristic of the composite disappears, which is attributed to the generation of more Fe-rich and In-poor phases in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

References

  1. Cazorla, C.: Novel mechanocaloric materials for solid-state cooling applications. Appl. Phys. Rev. 6, 041316 (2019)

    Article  Google Scholar 

  2. Fähler, S., Pecharsky, V.K.: Caloric effects in ferroic materials. MRS Bull. 43, 264–268 (2018)

    Article  ADS  Google Scholar 

  3. Franco, V., Blazquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramirez, L.M., Conde, A.: Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  4. Karaca, H.E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y.I., Maier, H.J.: Magnetic field-induced phase transformation in nimncoin magnetic shape-memory alloys − a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009)

    Article  CAS  Google Scholar 

  5. Kosugi, Y., Goto, M., Tan, Z., Kan, D., Isobe, M., Yoshii, K., Mizumaki, M., Fujita, A., Takagi, H., Shimakawa, Y.: Giant multiple caloric effects in charge transition ferrimagnet. Sci. Rep. 11, 12682 (2021)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  6. Li, B., Kawakita, Y., Ohira-Kawamura, S., Sugahara, T., Wang, H., Wang, J.F., Chen, Y.N., Kawaguchi, S.I., Kawaguchi, S., Ohara, K., Li, K., Yu, D.H., Mole, R., Hattori, T., Kikuchi, T., Yano, S.I., Zhang, Z., Zhang, Z., Ren, W.J., Lin, S.C., Sakata, O., Nakajima, K., Zhang, Z.D.: Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., Gutfleisch, O.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Mañosa, L., Planes, A.: Solid-state cooling by stress: a perspective. Appl. Phys. Lett. 116, 050501 (2020)

    Article  ADS  Google Scholar 

  9. Moya, X., Kar-Narayan, S., Mathur, N.D.: Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Moya, X., Mathur, N.D.: Caloric materials for cooling and heating. Science 370, 797–803 (2020)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Takeuchi, I., Sandeman, K.: Solid-state cooling with caloric materials. Phys. Today 68, 48–54 (2015)

    Article  CAS  ADS  Google Scholar 

  12. Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., Ishida, K.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Manosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Wu, Z.G., Liang, Z.W., Zhang, Y.J., Liu, Z.H., Zhang, J.S., Motazedian, F., Bakhtiari, S., Shariat, B.S., Liu, Y.N., Ren, Y., Yang, H.: A eutectic dual-phase design towards superior mechanical properties of Heusler-type ferromagnetic shape memory alloys. Acta Mater. 181, 278–290 (2019)

    Article  CAS  ADS  Google Scholar 

  15. Feng, Y., Sui, J.H., Wang, H.B., Cai, W.: Reversible magnetic-field-induced phase transformation and magnetocaloric effect above room temperature in a Ni-Mn-In-Fe polycrystal. J. Magn. Magn. Mater. 324, 1982–1984 (2012)

    Article  CAS  ADS  Google Scholar 

  16. Li, Z.Z., Li, Z.B., Yang, B., Zhao, X., Zuo, L.: Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy. Scr. Mater. 151, 61–65 (2018)

    Article  CAS  ADS  Google Scholar 

  17. Tan, C.L., Zhang, K.Z.K., Tian, X.H., Cai, W.: Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite. Chin. Phys. B 24, 57502 (2015)

    Google Scholar 

  18. Hou, H.L., Finkel, P., Staruch, M., Cui, J., Takeuchi, I.: Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device. Nat. Commun. 9, 4075 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Xue, D.Q., Yuan, R.H., Zhou, Y.M., Xue, D.Z., Lookman, T., Zhang, G.J., Ding, X.D., Sun, J.: Design of high temperature Ti-Pd-Cr shape memory alloys with small thermal hysteresis. Sci. Rep. 6, 28244 (2016)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  20. Kuang, Y.F., Ai, Z.R., Yang, B., Hao, X.W., Li, Z.B., Yan, H.L., Zhang, Y.D., Esling, C., Zhao, X., Zuo, L.: Simultaneously achieved good mechanical properties and large magnetocaloric effect in spark plasma sintered Ni-Mn-In alloys. Intermetallics 124, 106868 (2020)

    Article  CAS  Google Scholar 

  21. Chen, F., Sánchez Llamazares, J.L., Sánchez-Valdés, C.F., Chen, F.H., Li, Z.B., Tong, Y.X., Li, L.: Large magnetic entropy change and refrigeration capacity around room temperature in quinary Ni41Co9-xFexMn40Sn10 alloys (x= 2.0 and 2.5). J. Alloys Compd. 825, 154053 (2020)

    Article  CAS  Google Scholar 

  22. Wood, M.E., Potter, W.H.: General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25, 667–683 (1985)

    Article  CAS  ADS  Google Scholar 

  23. Chattopadhyay, M.K., Sharma, V.K., Roy, S.B.: Thermomagnetic history dependence of magnetocaloric effect in Ni50Mn34In16. Appl. Phys. Lett. 92, 022503 (2008)

    Article  ADS  Google Scholar 

  24. Huang, L., Cong, D.Y., Ma, L., Nie, Z.H., Wang, Z.L., Suo, H.L., Ren, Y., Wang, Y.D.: Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy. Appl. Phys. Lett. 108, 032405 (2016)

    Article  ADS  Google Scholar 

  25. Sharma, V.K., Chattopadhyay, M.K., Roy, S.B.: Large inverse magnetocaloric effect in Ni50Mn34In16. J. Phys. D Appl. Phys. 40, 1869 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Sharma, V.K., Chattopadhyay, M.K., Sharath Chandra, L.S., Roy, S.B.: Elevating the temperature regime of the large magnetocaloric effect in a Ni-Mn-In alloy towards room temperature. J. Phys. D Appl. Phys. 44, 145002 (2011)

    Article  ADS  Google Scholar 

  27. Zhang, H.H., Qian, M.F., Zhang, X.X., Jiang, S.D., Wei, L.S., Xing, D.W., Sun, J.F., Geng, L.: Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique. Mater. Des. 114, 1–9 (2017)

    Article  Google Scholar 

  28. Zhang, H.H., Zhang, X.X., Qian, M.F., Yao, Z.X., Wei, L.S., Geng, L.: Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. J. Magn. Magn. Mater. 500, 166359 (2020)

    Article  Google Scholar 

  29. Zhang, H.H., Zhang, X.X., Qian, M.F., Yin, L.M., Wei, L.S., Xing, D.W., Sun, J.F., Geng, L.: Magnetocaloric effect in Ni-Fe-Mn-Sn microwires with nano-sized γ precipitates. Appl. Phys. Lett. 116, 063904 (2020)

    Article  CAS  ADS  Google Scholar 

  30. Zhang, R.C., Qian, M.F., Zhang, X.X., Qin, F.X., Wei, L.X., Xing, D.W., Cui, X.P., Sun, J.F., Geng, L., Peng, H.X.: Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys. J. Magn. Magn. Mater. 428, 464–468 (2017)

    Article  CAS  ADS  Google Scholar 

  31. Pandey, S., Quetz, A., Aryal, A., Dubenko, I., Blinov, M., Rodionov, I., Prudnikov, V., Mazumdar, D., Granovsky, A., Stadler, S., Ali, N.: Giant field-induced adiabatic temperature changes in In-based off-stoichiometric Heusler alloys. J. Appl. Phys. 121, 133901 (2017)

    Article  ADS  Google Scholar 

  32. Kazakov, A.P., Prudnikov, V.N., Granovsky, A.B., Zhukov, A.P., Gonzalez, J., Dubenko, I., Pathak, A.K., Stadler, S., Ali, N.: Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni-Mn-In based Heusler alloys. Appl. Phys. Lett. 98, 131911 (2011)

    Article  ADS  Google Scholar 

  33. Li, Z.B., Dong, S.Y., Li, Z.Z., Yang, B., Liu, F., Sanchez-Valdes, C.F., Llamazares, J.L.S., Zhang, Y.D., Esling, C., Zhao, X., Zuo, L.: Giant low-field magnetocaloric effect in Si alloyed Ni-Co-Mn-In alloys. Scr. Mater. 159, 113–118 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52301248, 52271166, 52071071, and 52275567), the Foundational Research Project of Shanxi Province (Grant Nos. 202203021222201, 202203021212304, and 202103021223270), the PhD Research Startup Foundation of Taiyuan University of Science & Technology (Grant Nos. 20222057 and 20192016), and the PhD Research Startup Foundation of Shanxi Province (Grant No. 20232051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafei Kuang, Bo Yang or Jifan Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, Y., Guo, J. et al. Effect of Sintering Temperature on the Magnetocaloric Effect of Ni-Mn-In/Tb-Dy-Fe Composites. J Supercond Nov Magn 37, 557–563 (2024). https://doi.org/10.1007/s10948-024-06695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06695-9

Keywords

Navigation