Skip to main content
Log in

Study of Coupling in Superconducting Transmission Lines

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The use of transmission lines is widely accepted in the design of multiple active and passive devices given their capabilities to operate with signals in the whole frequency spectrum. However, a factor that difficult their design is the coupling effect when there are multiple transmission lines in parallel. Depending of the application, this factor could have a beneficial or detrimental effect in transmission lines. In particular, superconducting parametric amplifiers experiment this effect. The focus of this paper to understand the crosstalk so future superconducting parametric amplifiers can be designed considering the crosstalk. The study was achieved using coplanar waveguide transmission lines, artificial coplanar waveguide transmission lines, and microstrip lines. Dimensions of state-of-the-art (SOTA) parametric amplifiers have been used to have a suitable comparison with the nowadays state of the art superconducting parametric amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The data that support the findings of this study and available from the corresponding author, D. Valenzuela, upon reasonable request.

References

  1. Ferrari, L., Yurduseven, O., Llombart, N., Yates, S.J.C., Bueno, J., Murugesan, V., Thoen, D.J., Endo, A., Baryshev, A.M., Baselmans, J.J.A.: IEEE Trans. Terahertz Sci. Technol. 8(1), 127 (2018). https://doi.org/10.1109/TTHZ.2017.2764378

    Article  CAS  ADS  Google Scholar 

  2. Řeháček, J., Peřina, J., Facchi, P., Pascazio, S., Mišta, L.: Phys. Rev. A 62, 013804 (2000). https://doi.org/10.1103/PhysRevA.62.013804. https://link.aps.org/doi/10.1103/PhysRevA.62.013804

  3. Uzawa, Y., Fujii, Y., Kojima, T., Kroug, M., Wenlei, S., Ezaki, S., Miyachi, A., Kiuchi, H., Gonzalez, A.: Rad. Sci. 56 (2021). https://doi.org/10.1029/2020RS007157

  4. Yagoubov, P., Gonzalez, A., Tapia, V., Reyes, N., Mena, F.P., Nesti, R., Cuttaia, F., Ricciardi, S., Villa, F.: In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2016)

  5. Tapia, V., Nesti, R., Gonzalez, A., Barrueto, I., Mena, F., Reyes, N., Villa, F., Cuttaia, F., Yagoubov, P.: (2016). https://doi.org/10.1117/12.2233143

  6. Ho Eom, B., Day P.K., LeDuc, H.G., Zmuidzinas, J.: Nat. Phys. 8, 623 EP (2012). https://doi.org/10.1038/nphys2356. Article

  7. Krantz, P., Bengtsson, A., Simoen, M., Gustavsson, S., Shumeiko, V., Oliver, W.D., Wilson, C.M., Delsing, P., Bylander, J.: Nat. Commun. 7(1), 11417 (2016). https://doi.org/10.1038/ncomms11417

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. Frattini, N.E., Vool, U., Shankar, S., Narla, A., Sliwa, K.M., Devoret, M.H.: Appl. Phys. Lett. 110(22), 222603 (2017). https://doi.org/10.1063/1.4984142

    Article  CAS  ADS  Google Scholar 

  9. Ranzani, L., Ribeill, G., Hassick, B., Fong, K.C.: pp. 314–319. (2022). https://doi.org/10.1109/QCE53715.2022.00052

  10. Ezenkova, D., et al.: Appl. Phys. Lett. 121(23), 232601 (2022). https://doi.org/10.1063/5.0129862

    Article  CAS  ADS  Google Scholar 

  11. Mattis, D.C., Bardeen, J.: Phys. Rev. 111, 412 (1958). https://doi.org/10.1103/PhysRev.111.412. https://link.aps.org/doi/10.1103/PhysRev.111.412

  12. Calvo, M., Goupy, J., D’Addabbo, A., Benoit, A., Bourrion, O., Catalano, A., Monfardini, A.: Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 824, 173 (2016). https://doi.org/10.1016/j.nima.2015.11.127. Frontier Detectors for Frontier Physics: Proceedings of the 13th Pisa Meeting on Advanced Detectors

  13. Su, H.T., Wang, Y., Huang, F., Lancaster, M.J.: J. Supercond. Novel Magn. 21(1), 7 (2008). https://doi.org/10.1007/s10948-007-0239-2

    Article  CAS  Google Scholar 

  14. Pozar, D.M.: Microwave engineering; 3rd ed. (Wiley, Hoboken, NJ, 2005). https://cds.cern.ch/record/882338

  15. Hill, D., Cavcey, K., Johnk, R.: IEEE Trans. Electromagn. Compat. 36(4), 314 (1994). https://doi.org/10.1109/15.328861

    Article  Google Scholar 

  16. Kong, K.S.: Design aspects and comparison between high t(sub c) superconducting coplanar waveguide and microstrip line. Technical note 91N27445, NASA, Orlando, FL (1991)

  17. Yu, S., Shu, S., Duan, R., Yang, L., Li, D.: (2022). https://arxiv.org/abs/2209.09544

  18. Vissers, M.R., Erickson, R.P., Ku, H.S., Vale, L.R., Wu, X., Hilton, G.C., Pappas, D.P.: Appl. Phys. Lett. 108 (2016)

  19. Macklin, C., O’Brien, K., Hover, D., Schwartz, M., Bolkhovsky, V., Zhang, X., Oliver, W.D., Siddiqi, I.: Science (New York, N.Y.) 350 (2015). https://doi.org/10.1126/science.aaa8525

  20. Tolpygo, S.K.: IEEE Trans. Appl. Supercond. 33(2), 1 (2023). https://doi.org/10.1109/tasc.2022.3230373

    Article  CAS  Google Scholar 

  21. Tan, B.K., Boussaha, F., Chaumont, C., Longden, J., Navarro Montilla, J.: Engineering the thin film characteristics for optimal performance of superconducting kinetic inductance amplifiers using a rigorous modelling technique (2022). https://doi.org/10.12688/openreseurope.14860.1

  22. Degnan, Z., He, X., Frieiro, A.G., Sachkou, Y.P., Fedorov, A., Jacobson, P.: Mater. Quantum Technol. 2(2), 025004 (2022). https://doi.org/10.1088/2633-4356/ac70a2

    Article  ADS  Google Scholar 

  23. Hammerstad, E., Jensen, O.: In 1980 IEEE MTT-S International Microwave Symposium Digest pp. 407–409 (1980). https://doi.org/10.1109/MWSYM.1980.1124303

  24. Yassin, G., Withington, S.: J. Phys. D. Appl. Phys. 28(9), 1983 (1995). https://doi.org/10.1088/0022-3727/28/9/028

    Article  CAS  ADS  Google Scholar 

  25. Wenner, J., Barends, R., Bialczak, R.C., Chen, Y., Kelly, J., Lucero, E., Mariantoni, M., Megrant, A., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wang, H., White, T.C., Yin, Y., Zhao, J., Cleland, A.N., Martinis, J.M.: Appl. Phys. Lett. 99(11), 113513 (2011). https://doi.org/10.1063/1.3637047

    Article  CAS  ADS  Google Scholar 

  26. Bosco, S., DiVincenzo, D.P.: Phys. Rev. B 100(3) (2019). https://doi.org/10.1103/physrevb.100.035416

  27. Rösch, M.: Development of lumped element kinetic inductance detectors for mm-wave astronomy at the IRAM 30 m telescopenull (KIT Scientific Publishing, 2013). https://doi.org/10.5445/KSP/1000036607

  28. Lopriore, D.: Nonlinear mode coupling and parametric amplification with superconducting kinetic inductance. Master’s thesis, KTH, Applied Physics (2022)

  29. Duan, P., Jia, Z., Zhang, C., Du, L., Tao, H., Yang, X., Guo, L., Chen, Y., Zhang, H., Peng, Z., Kong, W., Li, H.O., Cao, G., Guo, G.P.: Appl. Phys. Express 14(4), 042011 (2021). https://doi.org/10.35848/1882-0786/abf029

  30. Martín, F.: Artificial transmission lines for RF and microwave applications (Wiley, 2015). https://doi.org/10.1002/9781119058403

  31. Park, J.W., Kim, G.N., Kim, J.P.: In IEEE MTT-S International Microwave Symposium Digest pp. 2227–2230 (2005). https://doi.org/10.1109/MWSYM.2005.1517195

  32. Quan, D.M., Hung, L.Q., Thien, P.X.: J. Phys. Conf. Ser. 1679(2), 022005 (2020). https://doi.org/10.1088/1742-6596/1679/2/022005

    Article  Google Scholar 

  33. Malnou, M., Vissers, M.R., Wheeler, J.D., Aumentado, J., Hubmayr, J., Ullom, J.N., Gao, J.: PRX Quantum 2, 010302 (2021). https://doi.org/10.1103/PRXQuantum.2.010302. https://link.aps.org/doi/10.1103/PRXQuantum.2.010302

  34. Hähnle, S., Marrewijk, N.V., Endo, A., Karatsu, K., Thoen, D.J., Murugesan, V., Baselmans, J.J.A.: Appl. Phys. Lett. 116(18), 182601 (2020). https://doi.org/10.1063/5.0005047

  35. Kerr, A.R.: National Radio Astronomy Observatory (NRAO) (1999)

  36. Aude, D.: Modeling superconductors using surface impedance techniques. Master’s thesis, Massachusets Institute of Technology (2011)

  37. Hill, D., Cavcey, K., Johnk, R.: IEEE Trans. Electromagn. Compat. 36(4), 314 (1994). https://doi.org/10.1109/15.328861

    Article  Google Scholar 

  38. Kyynäräinen, J., Niinikoski, T., Semertzidis, Y., Voss, R., Berglund, P., Seppä, H., Suni, I.: Superconducting microstrip detectors. No. CERN-DRDC-93-53; DRDC-P-53 in CERN. Committee Documents (European Organization for Nuclear Research (CERN), Switzerland, 1994). LIS: D2 CA2: 1304 CA: AUT Project code: AUT4525 PGN: 20

  39. Corral, A.L.: Superconducting coplanar resonators for quantum computing. Master’s thesis, Autonomous University of Barcelona (2020)

  40. Hammerstad, E.: 1975 5th European Microwave Conference pp. 268–272 (1975). https://api.semanticscholar.org/CorpusID:23699478

  41. Thoen, D.J., Bos, B.G.C., Haalebos, E.A.F., Klapwijk, T.M., Baselmans, J.J.A., Endo, A.: IEEE Trans. Appl. Supercond. 27(4), 1 (2017). https://doi.org/10.1109/TASC.2016.2631948

    Article  Google Scholar 

  42. Hähnle, S., Kouwenhoven, K., Buijtendorp, B., Endo, A., Karatsu, K., Thoen, D.J., Murugesan, V., Baselmans, J.J.: Phys. Rev. Appl. 16, 014019 (2021). https://doi.org/10.1103/PhysRevApplied.16.014019

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially funded by ANID through grants Fondecyt 1180700 and Basal ACE210002 and FB210003. The work of D. Valenzuela was supported by the grant DOCTORADO BECAS CHILE 2020 – 21200705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Valenzuela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, D. Study of Coupling in Superconducting Transmission Lines. J Supercond Nov Magn 37, 515–525 (2024). https://doi.org/10.1007/s10948-023-06680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06680-8

Keywords

Navigation