Skip to main content
Log in

Preparation and Magnetic Properties of High-Entropy Perovskite Oxide (La0.2Y0.2Pr0.2Nd0.2Sm0.2)CrO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

High-entropy perovskite oxide (HEPO) crystallizes in perovskite structure (ABO3) and is characterized by five or more elements sharing one lattice site (A or B). HEPO has received a lot of attention in recent years due to its excellent properties. A single phase (La0.2Y0.2Pr0.2Nd0.2Sm0.2)CrO3 is prepared by solid phase reaction method, and its crystal structure and magnetic properties are investigated here. Although five rare earth elements occupy the same lattice site, a unitary perovskite structure formed. The magnetic measurement results show an antiferromagnetic transition at about 210 K, and interesting magnetization reversal and exchange bias effect at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steurer, W.: Single-phase high-entropy alloys - a critical update. Mater. Charact. 162, 110179 (2020)

    Article  Google Scholar 

  2. Yeh, J.W., Chen, S.K., Gan, J.Y., Lin, S.J., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y.: Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A. 35A, 2533–2536 (2004)

    Article  Google Scholar 

  3. Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., Maria, J.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015)

    Google Scholar 

  4. Corey, O., Cormac, T., Stefano, C.: High-entropy ceramics. Nat. Rev. Mater. 5, 295 (2020)

    Google Scholar 

  5. Nita, D., David, B.: Order emerging from disorder entropy stabilization provides a new direction for developing functional materials. Science 366, 573–574 (2019)

    Google Scholar 

  6. Zhang, J., Yan, J., Calder, S., Zheng, Q., McGuire, M.A., Abernathy, D.L., Ren, Y., Lapidus, S.H., Page, K., Zheng, H., Freeland, J.W., Budai, J.D., Hermann, R.P.: Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31, 3705–3711 (2019)

    Article  Google Scholar 

  7. Marik, S., Singh, D., Gonano, B., Veillon, F., Pelloquin, D., Bréard, Y.: Enhanced magnetic frustration in a new high entropy diamond lattice spinel oxide. Scr. Mater. 186, 366–369 (2020)

    Article  Google Scholar 

  8. Marik, S., Singh, D., Gonano, B., Veillon, F., Pelloquin, D., Bréard, Y.: Long range magnetic ordering and magneto-(di) electric effect in a new class of high entropy spinel oxide. Scr. Mater. 183, 107–110 (2020)

    Article  Google Scholar 

  9. Zhang, F., Cheng, F., Cheng, C., Guo, M., Liu, Y., Miao, Y., Gao, F., Wang, X.: Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La)O high entropy fluorite oxides. J. Mater. Sci. Technol. 105, 122–130 (2022)

    Article  Google Scholar 

  10. Djenadic, R., Sarkar, A., Clemens, O., Loho, C., Botros, M., Chakravadhanula, V.S.K., Kübel, C., Bhattacharya, S.S., Gandhi, A.S., Hahn, H.: Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5, 102–109 (2017)

    Article  Google Scholar 

  11. Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., Cui, Y.: A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 777, 767–774 (2019)

  12. Zhao, C., Ding, F., Lu, Y., Chen, L., Hu, Y.S.: High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. 132, 270–275 (2020)

    Article  ADS  Google Scholar 

  13. Chen, H., Xiang, H., Dai, F., Liu, J., Zhou, Y.: High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J. Mater. Sci. Technol. 36, 134–139 (2020)

  14. Ren, K., Wang, Q., Shao, G., Zhao, X., Wang, Y.: Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scr. Mater. 178, 382–386 (2020)

    Article  Google Scholar 

  15. Chen, H., Fu, J., Zhang, P., Peng, H., Abney, C.W., Jie, K., Liu, X., Chi, M., Dai, S.: Entropy-stabilized metal oxide solid solutions as co oxidation catalysts with high-temperature stability. J. Mater. Chem. A. 6, 11129–11133 (2018)

    Article  Google Scholar 

  16. Edalati, P., Wang, Q., Razavi-Khosroshahi, H., Fuji, M., Ishihara, T., Edalati, K.: Photocatalytic hydrogen evolution on a high-entropy oxide. J. Mater. Chem. A. 8, 3814–3821 (2020)

    Article  Google Scholar 

  17. Mao, A., Xie, H., Xiang, H., Zhang, Z., Zhang, H., Ran, S.: A novel six-component spinel-structure high-entropy oxide with ferrimagnetic property. J. Magn. Magn. Mater. 503, 166594 (2020)

    Article  Google Scholar 

  18. Witte, R., Sarkar, A., Kruk, R., Eggert, B., Brand, R.A., Wende, H., Hahn, H.: High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3, 34406 (2019)

    Article  Google Scholar 

  19. Sharma, Y., Zheng, Q., Mazza, A.R., Skoropata, E., Heitmann, T., Gai, Z., Musico, B., Miceli, P.F., Sales, B.C., Keppens, V., Brahlek, M., Ward, T.Z.: Magnetic anisotropy in single-crystal high-entropy perovskite oxide La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films. Phys. Rev. Mater. 4, 14404 (2020)

  20. Yang, L., Kong, X., Li, F., Hao, H., Cheng, Z., Liu, H., Li, J., Zhang, S.: Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    Article  Google Scholar 

  21. Sunarso, J., Hashim, S.S., Zhu, N., Zhou, W.: Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog. Energy Combust. Sci. 61, 57–77 (2017)

    Article  Google Scholar 

  22. Nan, H., Hu, X., Tian, H.: Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater. Sci. Semicond. Process. 94, 35–50 (2019)

    Article  Google Scholar 

  23. Zheng, T., Wu, J., Xiao, D., Zhu, J.: Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    Article  Google Scholar 

  24. Grabowska, E.: Selected perovskite oxides: characterization, preparation and photocatalytic properties-a review. Appl. Catal. B. 186, 97–126 (2016)

    Article  Google Scholar 

  25. Zhivulin, V.E., Trofimov, E.A., Gudkova, S.A., Punda, A.Y., Valiulina, A.N., Gavrilyak, A.M., Zaitseva, O.V., Tishkevich, D.I., Zubar, T.I., Sun, Z., Zhou, D., Trukhanov, S.V., Vinnik, D.A., Trukhanov, A.V.: Impact of the a-site rare-earth ions (Ln3+-Sm3+, Eu3+, Gd3+) on structure and electrical properties of the high entropy LnCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskites. Ceram. Int. 48, 9239–9247 (2022)

  26. Manna, P.K., Yusuf, S.M., Shukla, R., Tyagi, A.K.: Pole-reversal of magnetization in core-shell type La1−xCexCrO3(x = 0.8–1.0) nanoparticles. J. Phys. Conf. Ser. 200, 72063 (2010)

  27. Pęczkowski, P., Łuszczek, M., Szostak, E., Muniraju, N.K.C., Krztoń-Maziopa, A., Gondek, Ł: Superconductivity and appearance of negative magnetocaloric effect in Ba1–xKx BiO3 perovskites, doped by y, la and pr. Acta Mater. 222, 117437 (2022)

    Article  Google Scholar 

  28. Matsunaga, Y., Kawaji, H., Atake, T., Takahashi, H., Hashimoto, T.: Analysis of structural and magnetic phase transition behaviors of La1−xSrxCrO3 by measurement of heat capacity with thermal relaxation technique. Thermochim. Acta. 474, 57–61 (2008)

    Article  Google Scholar 

  29. Sarkar, A., Djenadic, R., Wang, D., Hein, C., Kautenburger, R., Clemens, O., Hahn, H.: Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38, 2318–2327 (2018)

    Article  Google Scholar 

  30. Zhang, X., Xue, L., Yang, F., Shao, Z., Zhang, H., Zhao, Z., Wang, K.: (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3: a novel conductive porous high-entropy ceramic synthesized by the sol-gel method. J. Alloys Compd. 863, 158763 (2021)

  31. Vinnik, D.A., Trofimov, E.A., Zhivulin, V.E., Gudkova, S.A., Zaitseva, O.V., Zherebtsov, D.A., Starikov, A.Y., Sherstyuk, D.P., Amirov, A.A., Kalgin, A.V., Trukhanov, S.V., Podgornov, F.V.: High entropy oxide phases with perovskite structure. Nanomaterials 10, 268 (2020)

    Article  Google Scholar 

  32. Ma, J., Chen, K., Li, C., Zhang, X., An, L.: High-entropy stoichiometric perovskite oxides based on valence combinations. Ceram. Int. 47, 24348–24352 (2021)

    Article  Google Scholar 

  33. Jiang, S., Hu, T., Gild, J., Zhou, N., Nie, J., Qin, M., Harrington, T., Vecchio, K., Luo, J.: A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018)

    Article  Google Scholar 

  34. Witte, R., Sarkar, A., Velasco, L., Kruk, R., Brand, R.A., Eggert, B., Ollefs, K., Weschke, E., Wende, H., Hahn, H.: Magnetic properties of rare-earth and transition metal based perovskite type high entropy oxides. J. Appl. Phys. 127, 185109 (2020)

    Article  ADS  Google Scholar 

  35. Liu, Z., Xu, S., Li, T., Xie, B., Guo, K., Lu, J.: Microstructure and ferroelectric properties of high-entropy perovskite oxides with a-site disorder. Ceram. Int. 47, 33039–33046 (2021)

    Article  Google Scholar 

  36. Chan, T.S., Liu, R.S., Yang, C.C., Li, W.H., Lien, Y.H., Huang, C.Y., Lee, J.F.: Chemical size effect on the magnetic and electrical properties in the (Tb1-xEux)MnO3(0≤x≤1.0) system. J. Phys. Chem. B. 111, 2262–2267 (2007)

  37. Zhao, Y., Weidner, D.J., Parise, J.B., Cox, D.E.: Thermal expansion and structural distortion of perovskite — data for NaMgF3 perovskite. Part I. Phys. Earth Planet. 76, 1–16 (1993)

    Article  ADS  Google Scholar 

  38. Su, L., Huyan, H., Sarkar, A., Gao, W., Yan, X., Addiego, C., Kruk, R., Hahn, H., Pan, X.: Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides. Nat. Commun. 13, 2358 (2022)

    Article  ADS  Google Scholar 

  39. Mazza, A.R., Acharya, S.R., Wąsik, P., Lapano, J., Li, J., Musico, B.L., Keppens, V., Nelson, C.T., May, A.F., Brahlek, M., Mazzoli, C., Pelliciari, J., Bisogni, V., Cooper, V.R., Ward, T.Z.: Variance induced decoupling of spin, lattice, and charge ordering in perovskite nickelates. Phys. Rev. Res. 5, 012008 (2023)

    Article  Google Scholar 

  40. Shanker, J., Buchi Suresh, M., Narsinga Rao, G., Suresh Babu, D.: Colossal dielectric, relaxor ferroelectric, diamagnetic and weak ferromagnetic properties of NdCrO3 perovskite nanoparticles. J. Mater. Sci. 54, 5595–5604 (2019)

    Article  ADS  Google Scholar 

  41. Dash, B.B., Ravi, S.: Effect of yttrium substitution on the structural and magnetic properties of GdCrO3. J. Magn. Magn. Mater. 448, 355–359 (2018)

    Article  ADS  Google Scholar 

  42. Wang, S., Huang, K., Hou, C., Yuan, L., Wu, X., Lu, D.: Low temperature hydrothermal synthesis, structure and magnetic properties of ReCrO3 (Re = La, Pr, Nd, Sm). Dalton Trans. 44, 1721–1728 (2015)

    Google Scholar 

  43. Singh, K.D., Singh, F., Choudhary, R.J., Kumar, R.: Consequences of R3+ cationic radii on the dielectric and magnetic behavior of RCrO3 perovskites. Appl. Phys. A. 126, 148 (2020)

    Article  ADS  Google Scholar 

  44. Tiwari, B., Dixit, A., Naik, R., Lawes, G., Ramachandra Rao, M.S.: Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: a possible near room temperature magnetodielectric system. Appl. Phys. Lett. 103, 152906 (2013)

    Article  ADS  Google Scholar 

  45. Jaiswal, A., Das, R., Vivekanand, K., Maity, T., Abraham, P.M., Adyanthaya, S., Poddar, P.: Magnetic and dielectric properties and Raman spectroscopy of GdCrO3 nanoparticles. J. Appl. Phys. 107, 13912 (2010)

    Article  ADS  Google Scholar 

  46. Deepak, Kumar, A., Yusuf, S.M.: Correlation of exchange-bias effect with negative magnetization in perovskite compound, La0.5Pr0.5CrO3. J. Appl. Phys. 127, 213903 (2020)

  47. Huang, P., Deng, D., Zheng, J., Li, Q., Feng, Z., Kang, B., Ren, W., Jing, C., Zhang, J., Cao, S.: Negative magnetization and zero-field cooled exchange bias effect in Eu0.9Pr0.1CrO3 ceramics. Physica B. 530, 95–100 (2018)

  48. Biswas, S., Pal, S.: Negative magnetization in perovskite RTO3 (R=RARE-EARTH, T=Cr/Mn). Rev. Adv. Mater. Sci. 53, 206–217 (2018)

    Article  Google Scholar 

  49. Nogues, J., Lederman, D., Moran, T.J., Schuller, I.K.: Positive exchange bias in FeF2-Fe bilayers. Phys. Rev. Lett. 76, 4624–4627 (1996)

    Article  ADS  Google Scholar 

  50. Sharma, M.K., Singh, K., Mukherjee, K.: Exchange bias in a mixed metal oxide based magnetocaloric compound YFe0.5Cr0.5O3. J. Magn. Magn. Mater. 414, 116 (2016)

  51. Mazza, A.R., Skoropata, E., Sharma, Y., Lapano, J., Heitmann, T.W., Musico, B.L., Keppens, V., Gai, Z., Freeland, J.W., Charlton, T.R., Brahlek, M., Moreo, A., Dagotto, E., Ward, T.Z.: Designing magnetism in high entropy oxides. Adv. Sci. 9, 2200391 (2022)

    Article  Google Scholar 

  52. Mazza, A.R., Skoropata, E., Lapano, J., Chilcote, M.A., Jorgensen, C., Tang, N., Gai, Z., Singleton, J., Brahlek, M.J., Gilbert, D.A., Ward, T.Z.: Hole doping in compositionally complex correlated oxide enables tunable exchange biasing. APL Mater. 11, 31118 (2023)

    Article  Google Scholar 

  53. Meisenheimer, P.B., Kratofil, T.J., Heron, J.T.: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 13344 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 11104224 and 11004162), the Sichuan Science and Technology Development Project (no. 2021ZYD0027), and the Sichuan Natural Science Foundation (no. 2022NSFSC0340). Yongliang Chen gratefully acknowledges support by the Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhao or Yongliang Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Cui, Y., Zhao, Y. et al. Preparation and Magnetic Properties of High-Entropy Perovskite Oxide (La0.2Y0.2Pr0.2Nd0.2Sm0.2)CrO3. J Supercond Nov Magn 36, 1413–1419 (2023). https://doi.org/10.1007/s10948-023-06587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06587-4

Keywords

Navigation