Skip to main content
Log in

Synthesis, Characterization, and Magnetocaloric Properties of Double Perovskite BaSrNiMoO6 for Magnetic Refrigeration Applications

  • Review Article
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Double perovskites with the general formula A2BB′O6 have been the subject of several studies for of their magnetic properties. In this work, Ba2NiMoO6 was synthesized using the solid-state reaction method. At room temperature, the structural refinement reveals a cubic crystal, space group Fm-3 m, with a = 7.89 Å. The magnetic, electronic, elastic, and thermoelectric properties have been studied using the density functional theory (DFT) and Monte Carlo simulations. The result shows an antiferromagnetic insulator behavior. The anti-ferromagnetic ordering was explained by super exchange processes, between the half-filled eg orbitals of Ni2+ following the Goodenough-Kanamori rules. The electronic profile shows an insulator nature with an indirect band gap. The obtained value of band gap is 2.1 eV. The elastic constants Cij and their derived parameters show a high mechanical stability, a ductile behavior, and a weak elastic anisotropy. The magnetic and magnetocaloric properties have been investigated. The obtained temperature transition (TN \(\sim 66K\)) is comparable to the experiment results. The ΔSmax value increases with the magnetic field h its rises from − ΔSmax = 0.05 J/kg.K at h = 1 T to − ΔSmax = 0.72 J/kg.K at h = 5 T, which is essential for magnetic refrigeration. Finally, a further analysis of thermal conductivity, figure of merit, Seebeck coefficient, and electrical conductivity were also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ram, N.R., Prakash, M., Naresh, U., Kumar, N.S., Sarmash, T.S., Subbarao, T., Kumar, R.J., Kumar, G.R., Naidu, K.C.B.: Review on magnetocaloric effect and materials. J. Supercond. Nov. Magn. 31, 1971–1979 (2018). https://doi.org/10.1007/s10948-018-4666-z

    Article  Google Scholar 

  2. Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

    Article  ADS  Google Scholar 

  3. Harbi, A., Azouaoui, A., Benmokhtar, S., Moutaabbid, M.: Synthesis, characterization, and DFT investigation of the role of oxygen vacancy on the structural, magnetic, and electronic properties of La2CoMnO6. J. Supercond. Nov. Magn. 35, 1405–1412 (2022). https://doi.org/10.1007/s10948-022-06239-z

    Article  Google Scholar 

  4. Harbi, A., Le Godec, Y., Moutaabbid, H., Benmokhtar, S., Moutaabbid, M.: Tailoring the Griffiths-like cluster formation in the insulator ferromagnet spin-glass Gd 2 Ni x Co 1 − x Mn O 6 double perovskite. Phys. Rev. B. 104, 054404 (2021). https://doi.org/10.1103/PhysRevB.104.054404

  5. Han, L., Zhang, A., Zhai, W., Yang, J., Yan, Z., Zhang, T.: Critical properties of Perovskite Manganese oxides Pr1−xBaxMnO3. J. Supercond. Nov. Magn. 32, 3355–3359 (2019). https://doi.org/10.1007/s10948-019-5101-9

    Article  Google Scholar 

  6. Harbi, A., Moutaabbid, H., Li, Y., Renero-Lecuna, C., Fialin, M., Le Godec, Y., Benmokhtar, S., Moutaabbid, M.: The effect of cation disorder on magnetic properties of new double perovskites La2Ni Co1-MnO6 (x = 0.2–0.8). J. Alloys Comp. 778, 105–114 (2019). https://doi.org/10.1016/j.jallcom.2018.10.360

  7. Moreno, N.O., Barbosa, L.B., Reyes Ardila, D., Andreeta, J.P.: Magnetic measurements on single crystal of double perovskite Ca2FeMoO6. J. Supercond. Nov. Magn. 26, 2501–2503 (2013). https://doi.org/10.1007/s10948-012-1723-x

    Article  Google Scholar 

  8. Harbi, A., Moutaabbid, M.: First-principles investigation of structural, elastic, thermoelectric, electronic, and optical properties of ordered double perovskite Ba2MWO6 (M = Mg, Zn, and Cd). J. Supercond. Nov. Magn. 35, 3447–3456 (2022). https://doi.org/10.1007/s10948-022-06375-6

    Article  Google Scholar 

  9. Mechi, N., Hcini, S., Alzahrani, B., Boudard, M., Dhahri, A., Bouazizi, M.L.: La0.6Ca0.2Na0.2MnO3 Perovskite: structural, magnetic, critical, and magnetocaloric properties. J. Supercond. Nov. Magn. 33, 1385–1393 (2020). https://doi.org/10.1007/s10948-019-05353-9

  10. Li, C.L., Wang, L.G., Li, X.X., Zhu, C.M., Zhang, R., Wang, H.W., Yuan, S.L.: Magnetic field-induced metamagnetism and magnetocaloric effect in double perovskites Re2CoMnO6 (Re = Sm, Dy). Mater. Chem. Phys. 202, 76–81 (2017). https://doi.org/10.1016/j.matchemphys.2017.09.009

  11. El Oujihi, O., Tizliouine, A., Elouafi, A., Salhi, H., Omari, L.H.: Magnetic and magnetocaloric properties of the double perovskite Sm-doped Ho2CoMnO6. Solid State Commun. 358, 114977 (2022). https://doi.org/10.1016/j.ssc.2022.114977

  12. Erchidi Elyacoubi, A.S., Masrour, R., Jabar, A., Ellouze, M., Hlil, E.K.: Magnetic properties and magnetocaloric effect in double Sr2FeMoO6 perovskites. Mater. Res. Bull. 99, 132–135 (2018). https://doi.org/10.1016/j.materresbull.2017.10.037

    Article  Google Scholar 

  13. El Rhazouani, O., Slassi, A., Ziat, Y., Benyoussef, A.: Magnetocaloric effect in Sr2CrIrO6 double perovskite: Monte Carlo simulation. J. Phys. Chem. Solids 104, 32–35 (2017). https://doi.org/10.1016/j.jpcs.2016.12.033

    Article  ADS  Google Scholar 

  14. Martínez-Lope, M.J., Alonso, J.A., Casais, M.T.: Synthesis, Crystal and magnetic structure of the double perovskites A 2 NiMoO 6 (A = Sr, Ba): a neutron diffraction study. Eur. J. Inorg. Chem. 2003, 2839–2844 (2003). https://doi.org/10.1002/ejic.200300063

    Article  Google Scholar 

  15. Karki, S.B., Ramezanipour, F.: Magnetic and electrical properties of BaSrMMoO6 (M = Mn, Fe Co, and Ni). Mater. Today Chem. 13, 25–33 (2019). https://doi.org/10.1016/j.mtchem.2019.04.002

    Article  Google Scholar 

  16. Brown, I.D., Altermatt, D.: Acta Crystallogr. B: Struct. Sci. 41, 244 (1985)

    Article  Google Scholar 

  17. Goodenough, J.B., Wold, A., Arnott, R.J., Menyuk, N.: Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn 3 +. Phys. Rev. 124, 373–384 (1961). https://doi.org/10.1103/PhysRev.124.373

    Article  ADS  Google Scholar 

  18. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

  19. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

  20. Kulik, H.J., Cococcioni, M., Scherlis, D.A., Marzari, N.: Density functional theory in transition-metal chemistry: a self-consistent hubbard U approach. Phys. Rev. Lett. 97, 103001 (2006). https://doi.org/10.1103/PhysRevLett.97.103001

  21. Martínez-Lope, M.J., Alonso, J.A., Casais, M.T., Fernández-Díaz, M.T.: Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B = Mo, W). Eur. J. Inorg. Chem. 2002, 2463–2469 (2002). https://doi.org/10.1002/1099-0682(200209)2002:9%3c2463::AID-EJIC2463%3e3.0.CO;2-J

    Article  Google Scholar 

  22. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wallace, D.C.: Thermoelastic theory of stressed crystals and higher-order elastic constants**This work was supported by the U. S. Atomic Energy Commission. In: H. Ehrenreich, F. Seitz, D. Turnbull (Eds.). Solid State Phys. Academic Press, 301–404 (1970). https://doi.org/10.1016/S0081-1947(08)60010-7

  24. Harbi, A., Moutaabbid, M.: Thermoelectric and optoelectronic properties of novel lead-free halide perovskites CsRbTiX6 (X= I, Br and Cl) for photovoltaic applications. Comput. Condens. Matter. 32, e00733 (2022). https://doi.org/10.1016/j.cocom.2022.e00733

  25. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  26. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

  27. Azouaoui, A., Haoua, M.E., Salmi, S., Grini, A.E., Benzakour, N., Hourmatallah, A., Bouslykhane, K.: Structural, electronic, and magnetic properties of Mn4N Perovskite: density functional theory calculations and Monte Carlo study. J. Supercond. Nov. Magn. 33, 1507–1512 (2020). https://doi.org/10.1007/s10948-019-05345-9

    Article  Google Scholar 

  28. Azouaoui, A., Benzakour, N., Hourmatallah, A., Bouslykhane, K.: Structural, electronic, magnetic, elastic and thermodynamic properties of C r 4 N perovskite. Solid State Sci. 105, 106260 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106260

  29. Rezaei, N., Hashemifar, T., Alaei, M., Shahbazi, F., Hashemifar, S.J., Akbarzadeh, H.: Ab initio investigation of magnetic ordering in the double perovskite Sr 2 NiWO 6. Phys. Rev. B. 99, 104411 (2019). https://doi.org/10.1103/PhysRevB.99.104411

  30. Madsen, G.K.H., Singh, D.J.: Boltztrap. a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Takeuchi, T.: Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Mater. Trans. 50, 2359–2365 (2009). https://doi.org/10.2320/matertrans.M2009143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to A. Harbi.

Ethics declarations

Competing Interests

The authors declare no competing interests. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harbi, A., Azouaoui, A., Toual, Y. et al. Synthesis, Characterization, and Magnetocaloric Properties of Double Perovskite BaSrNiMoO6 for Magnetic Refrigeration Applications. J Supercond Nov Magn 36, 1171–1179 (2023). https://doi.org/10.1007/s10948-023-06546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06546-z

Keywords

Navigation