Skip to main content
Log in

Tailoring of the Uniaxial Anisotropy of Amorphous Films by Oblique Sputtering and In-Situ Magnetic Fields

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In order to research the effect of applied magnetic field direction on magnetic properties during oblique sputtering, in this paper, a magnetic field is applied along (or perpendicular to) in-plane projection of the incident direction of the sputtering atomic beam. VSM and magnetic spectrum results show that the applied magnetic field direction greatly affects the uniaxial anisotropy, thereby affecting the ferromagnetic resonance frequency. It was found by AFM and cross-sectional SEM that the morphology of the film and the angle of the inclined columnar crystal were completely different when the magnetic field was applied in different directions. When a magnetic field is applied along the in-plane projection of the incident direction of the sputtering atomic beam, the angle between the columnar crystal and the normal direction of the substrate is about 30°. When the magnetic field is applied to the in-plane projection perpendicular to the incident direction of the sputtering atomic beam, the columnar crystal can be seen vaguely, and there is basically no inclination angle. In addition, when the tilt angle is constant, the uniaxial anisotropy increases with the increase of target-substrate distance, which is caused by the increase of the electron beam inflow angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

References

  1. Silveyra, J.M., Ferrara, E., Huber, D.L., Monson, T.C.: Science 362, 6413 (2018)

    Article  Google Scholar 

  2. Mathúna, C.Ó., Wang, N.N., Kulkarni, S., Roy, S.: IEEE T. Power. Electr. 27, 4799 (2012)

    Article  Google Scholar 

  3. Talaat, A., Greve, D.W., Suraj, M.V., Ohodnicki, P.R., Jr.: J. Alloy. Compd. 854, 156480 (2021)

    Article  Google Scholar 

  4. Herzer, G.: Acta. Mater. 61, 718 (2013)

    Article  ADS  Google Scholar 

  5. Li, D.R., Li, S.H., Lu, Z.C.: J. Magn. Magn. Mater. 538, 168272 (2021)

    Article  Google Scholar 

  6. Azuma, D., Ito, N., Ohta, M.: J. Magn. Magn. Mater. 501, 166373 (2020)

    Article  Google Scholar 

  7. Phua, L.X., Phuoc, N.N., Ong, C.K.: J. Alloy. Compd. 543, 1 (2012)

    Article  Google Scholar 

  8. Chang, H.W., Huang, Y.H., Hsieh, C.C., Shih, C.W., Chang, W.C., Xue, D.S.: J. Alloy. Comp. 539, 276 (2012)

    Article  Google Scholar 

  9. Zeng, F.L., Ren, Z.Y., Li, Y., Zeng, J.Y., Jia, M.W., Miao, J., Hoffmann, A., Zhang, W., Wu, Y.Z., Yuan, Z.: Phys. Rev. Lett. 125, 097201 (2020)

    Article  ADS  Google Scholar 

  10. Gheisari, K., Ong, C.K.: Physica B Condens. Matter. 595, 412365 (2020)

    Article  Google Scholar 

  11. Tummalapalli, S., Yu, H.B.: AIP. Adv. 11, 025017 (2021)

    Article  ADS  Google Scholar 

  12. Phae-Ngam, W., Horprathum, M., Chananonnawathorn, C., Lertvanithphol, T., Samransuksamer, B., Songsiriritthigul, P., Nakajima, H., Chaiyakun, S.: Curr. Appl. Phys. 19, 894 (2019)

    Article  ADS  Google Scholar 

  13. Oh, Y.W., Baek, S.H.C., Kim, Y.M., Lee, H.Y., Lee, K.D., Yang, C.G., Park, E.S., Lee, K.S., Kin, K.W., Go, G., Jeong, J.R., Min, B.C., Lee, H.W., Lee, K.J., Park, B.G.: Nat. Nanotechnol. 11, 878 (2016)

    Article  ADS  Google Scholar 

  14. Zhong, X.X., Phuoc, N.N., Liu, Y., Ong, C.K.: J. Magn. Magn. Mater. 365, 8 (2014)

    Article  ADS  Google Scholar 

  15. Shiratsuchi, Y., Kuroda, W., Nguyen, T.V.A., Kotani, Y., Toyoki, K., Nakamura, T., Motohiro, S., Nakamura, K., Nakatani, R.: J. Appl. Phys. 121, 073902 (2017)

    Article  ADS  Google Scholar 

  16. Starodubtsev, Y.N., Kataev, V.A., Bessonova, K.O., Tsepelev, V.S.: J. Magn. Magn. Mater. 479, 19 (2019)

    Article  ADS  Google Scholar 

  17. Qiao, X.Y., Wen, X.C., Wang, B.M., Bai, Y.H., Zhan, Q.F., Xu, X.H., Li, R.W.: Appl. Phys. Lett. 111, 132405 (2017)

    Article  ADS  Google Scholar 

  18. Leary, A.M., Keylin, V., Ohodnicki, P.R., McHenry, M.E.: J. Appl. Phys. 117, 17A338 (2015)

    Article  Google Scholar 

  19. Li, H., He, A.N., Wang, A.D., Xie, L., Li, Q., Zhao, C.L., Zhao, G.Y., Chen, P.B.: J. Magn. Magn. Mater. 471, 110 (2019)

    Article  ADS  Google Scholar 

  20. Zhao, C.L., Wang, A.D., Yue, S.Q., Liu, T., He, A.N., Chang, C.T., Wang, X.M., Liu, C.T.: J. Alloy. Compd. 742, 220 (2018)

    Article  Google Scholar 

  21. Ali, M., Watts, R., Karl, W.J., Gibbs, M.R.J.: J. Magn. Magn. Mater. 190, 199 (1998)

    Article  ADS  Google Scholar 

  22. Wen, D.D., Zhang, H.W., Hui, X.L., Wang, Y.C., Zhong, Z.Y., Bai, F.M.: IEEE T. Magn. 50, 1 (2014)

    Article  ADS  Google Scholar 

  23. He, Y.H., Wang, Y.C., Zhong, Z.Y., Zhang, H.W., Bai, F.M.: IEEE T. Magn. 54, 1 (2018)

    Google Scholar 

  24. Chai, G.Z., Phuoc, N.N., Ong, C.K.: Appl. Phys. Express 7, 063001 (2014)

    Article  ADS  Google Scholar 

  25. Li, J.C., Zhan, Q.F., Zhang, S.L., Wei, J.W., Wang, J.B., Pan, M.J., Xie, Y.L., Yang, H.L., Zhou, Z., Xie, S.H., Wang, B.M., Li, R.W.: Sci. Rep. 7, 1 (2017)

    Article  ADS  Google Scholar 

  26. Li, C.Y., Chai, G.Z., Yang, C.C., Wang, W.F., Xue, D.S.: Sci. Rep. 5, 1 (2015)

    Google Scholar 

  27. Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., GudKova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A., Sombra, A.S.B., Zhou, D., Jotania, R.B., Singh, C., Trukhanov, A.V.: J. Mater. Chem. C 9, 5425 (2021)

    Article  Google Scholar 

  28. Robbie, K., Brett, M.J.: J. Vac. Sci. Technol A 15, 1460 (1997)

    Article  Google Scholar 

  29. Briley, C., Mock, A., Korlacki, R., Hofmann, T., Schubert, E., Schubert, M.: Appl. Surf. Sci. 421, 320 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2018YFE0115500), and by the National Natural Science Foundation of China (No. 51902037, 62005033), and by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. KFJJ201912), and by the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (No. KJQN201900615), and by the Nature Science Foundation of Chongqing (cstc2019jcyj-msxmX0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Chen, X., Chen, L. et al. Tailoring of the Uniaxial Anisotropy of Amorphous Films by Oblique Sputtering and In-Situ Magnetic Fields. J Supercond Nov Magn 36, 987–994 (2023). https://doi.org/10.1007/s10948-023-06528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06528-1

Keywords

Navigation