Skip to main content
Log in

Micromagnetic Simulation of the Shape Effect on the Permeability and Loss Tangent of Fe3O4 Nanoparticles in the Microwave Range

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Micromagnetic simulations are applied in order to investigate the effect of shape on the magnetic permeability and loss tangent for Fe3O4 nanoparticles in the frequency range of 0.5 to 20 GHz. Fe3O4 nanoparticles with 6 different shapes and equal volumes are studied in two groups: spherical particles, and prismatic particles with a hexagonal base. Our results show that, generally, elongated particles demonstrate higher microwave magnetic permeability. Moreover, we find that elongation reduces the resonance frequency in prismatic particles, while increases it in spherical ones. These results are important in designing advanced microwave absorbers, as they can be used to predict the effective permeability of a composite medium containing a certain percentage of magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Azizi, A.: Green synthesis of Fe3O4 nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposite: a suitable proposal for drug delivery systems. J. Inorg. Organomet. Polym. Mater. 30(9), 3552–3561 (2020). https://doi.org/10.1007/s10904-020-01500-1

    Article  Google Scholar 

  2. Wang, X., Liao, Y., Zhang, D., Wen, T., Zhong, Z.: A review of Fe3O4 thin films: synthesis, modification and applications. J. Mater. Sci. Technol. 34(8), 1259–1272 (2018). https://doi.org/10.1016/j.jmst.2018.01.011

    Article  Google Scholar 

  3. Qu, B., Zhu, C., Li, C., Zhang, X., Chen, Y.: Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8(6), 3730–3735 (2016). https://doi.org/10.1021/acsami.5b12789

    Article  Google Scholar 

  4. Zhao, T., et al.: Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15, 164–176 (2015). https://doi.org/10.1016/j.nanoen.2015.04.013

    Article  Google Scholar 

  5. Rocha-Santos, T.A.P.: Sensors and biosensors based on magnetic nanoparticles. TrAC - Trends Anal. Chem. 62, 28–36 (2014). https://doi.org/10.1016/j.trac.2014.06.016

    Article  Google Scholar 

  6. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4), 319–326 (2006). https://doi.org/10.1002/elan.200503415

    Article  Google Scholar 

  7. Scharnberg, A.R.A., de Loreto, A.C., Alves, A.K.: Optical and structural characterization of Bi2fexNbO7 nanoparticles for environmental applications. Emerg. Sci. J. 4(1), 11–17 (2020). https://doi.org/10.28991/esj-2020-01205

    Article  Google Scholar 

  8. Cui, C., et al.: MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2020.126626

    Article  Google Scholar 

  9. Liao, J., Qiu, J., Wang, G., Du, R., Tsidaeva, N., Wang, W.: 3D core-shell Fe3O4@SiO2@MoS2 composites with enhanced microwave absorption performance. J. Colloid Interface Sci. 604, 537–549 (2021). https://doi.org/10.1016/j.jcis.2021.07.032

    Article  ADS  Google Scholar 

  10. Liu, P., Yao, Z., Ng, V.M.H., Zhou, J., Kong, L.B., Yue, K.: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014

    Article  Google Scholar 

  11. Yang, Y., Yang, Y., Xiao, W., Neo, C.P., Ding, J.: Shape-dependent microwave permeability of Fe3O4 nanoparticles: a combined experimental and theoretical study. Nanotechnology 26(26), 265704 (2015). https://doi.org/10.1088/0957-4484/26/26/265704

    Article  ADS  Google Scholar 

  12. Liu, D., et al.: Micromagnetic simulation of the ground states of Ce-Fe-B amorphous nanodisks. AIP Adv. 8(5), 56011 (2018)

    Article  MathSciNet  Google Scholar 

  13. Wu, L.Z., Ding J., Jiang H.B., Neo, C.P., Chen, L.F., Ong, C.K.: High frequency complex permeability of iron particles in a nonmagnetic matrix. J. Appl. Phys. 99, (2006). https://doi.org/10.1063/1.2190719

  14. Li, Z.W., Lin, G.Q., Kong, L.B.: Microwave reflection characteristics of Co2Z barium ferrite composites with various volume concentration. IEEE Trans. Magn. 44(10), 2255–2261 (2008). https://doi.org/10.1109/TMAG.2008.2002301

    Article  ADS  Google Scholar 

  15. Gea, M., et al.: Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food Chem. Toxicol. (2019). https://doi.org/10.1016/j.fct.2019.02.043

    Article  Google Scholar 

  16. Gavilán, H., Posth, O., Bogart, L.K., Steinhoff, U., Gutiérrez, L., Morales, M.P.: How shape and internal structure affect the magnetic properties of anisometric magnetite nanoparticles. Acta Mater. 125, 416–424 (2017). https://doi.org/10.1016/j.actamat.2016.12.016

    Article  ADS  Google Scholar 

  17. Das, V.G.A., Bestha, K.K., Bongurala, P.: Correlation between size, shape and magnetic anisotropy of CoFe2O4 ferrite nanoparticles. (2020)

  18. Rajan, A., Sahu, N.K.: Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. (2020)

  19. Brown, W.F.: Micromagnetics, domains, and resonance. J. Appl. Phys. 30(4), S62–S69 (1959). https://doi.org/10.1063/1.2185970

    Article  ADS  Google Scholar 

  20. Gilbert, T.L.: D6. A Lagrangian formulation of the gyromagnetic equation of the magnetization fi eld. T. L. Gilbert. Phys. Reivew 100, 1243 (1955)

    Google Scholar 

  21. Grimes, C.A., Grimes, D.M.: Permeability and permittivity spectra of granular materials. Phys. Rev. B 43(13), 10780–10788 (1991). https://doi.org/10.1103/PhysRevB.43.10780

    Article  ADS  Google Scholar 

  22. Donahue, M.J., Porter, DG.: OOMMF: object oriented micromagnetic framework. (2016)

  23. Jin, H., Miyazaki, T.: “Micromagnetism”, Springer Ser. Mater. Sci. 158, 287–301 (2012). https://doi.org/10.1007/978-3-642-25583-0_8

    Article  Google Scholar 

  24. Wen, F., Zhang, F., Zheng, H.: Microwave dielectric and magnetic properties of superparamagnetic 8-nm Fe 3O 4 nanoparticles. J. Magn. Magn. Mater. 324(16), 2471–2475 (2012). https://doi.org/10.1016/j.jmmm.2012.03.013

    Article  ADS  Google Scholar 

  25. Birman, J., Edwards, S.F., Friend, R., Rees, M., Sherrington, D., Veneziano, G., International Series of Monographs on Physics. (2009)

  26. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen. Ann. Phys. 421(2), 160–178 (1937). https://doi.org/10.1002/andp.19374210205

    Article  Google Scholar 

  27. Nakatani, Y., Uesaka, Y., Hayashi N.: Direct solution of the landau-lifshitz-gilbert equation for micromagnetics. Jpn. J. Appl. Phys, 28(12R), 2485–2507 (1989). https://doi.org/10.1143/JJAP.28.2485

  28. Jazirehpour, M., Seyyed Ebrahimi, S.A.: Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloys Compd. 638, 188–196 (2015). https://doi.org/10.1016/j.jallcom.2015.03.021

  29. Jackson, J.D.: Classical electrodynamics. New York Wiley (1999)

  30. Bahl, C.R.H.: Estimating the demagnetization factors for regular permanent magnet pieces. AIP Adv. 11(7), (2021). https://doi.org/10.1063/5.0060897

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Shams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, M.H., Shams, M.H. & Gholizadeh, H. Micromagnetic Simulation of the Shape Effect on the Permeability and Loss Tangent of Fe3O4 Nanoparticles in the Microwave Range. J Supercond Nov Magn 36, 601–609 (2023). https://doi.org/10.1007/s10948-022-06452-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06452-w

Keywords

Navigation