Skip to main content
Log in

Tailoring Bloch-type Stripe Domain Wall by Spin–orbit Torque for Reconfigurable Magnonic Waveguides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Efficient manipulation of magnetic textures by spin–orbit torque is of great significance to spintronic and magnonic technologies. Here, using micromagnetic simulations, we exploit the dynamics of a Bloch-type stripe domain wall in a magnetic nanowire induced by the spin-Hall effect associated with a ferromagnet/heavy metal structure. Our numerical results demonstrate that, contrary to the Néel-type stripe domain wall, the stripe Bloch domain wall varies its internal spin configuration in response to the applied electric current and, in the meantime, travels toward an edge of the nanowire. The higher the current density applied, the nearer the domain wall approaches the edge. Thereby, the stripe Bloch domain wall is movable to any desired position with respect to the edge by fine-tuning the current density and/or its action time. These discoveries will find application in reconfigurable spin-wave channeling based on magnetic domain walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lenk, B., Ulrichs, H., Garbs, F., Muenzenberg, M.: The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011)

    Article  ADS  Google Scholar 

  2. Khitun, A., Bao, M., Wang, K.L.: Magnonic logic circuits. J. Phys. D 43, 264005 (2010)

    Article  ADS  Google Scholar 

  3. Kajiwara, Y., Harii, K., Takahashi, S., Ohe, J., Uchida, K., Mizuguchi, M., Umezawa, H., Kawai, H., Ando, K., Takanashi, K., Maekawa, S., Saitoh, E.: Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010)

    Article  ADS  Google Scholar 

  4. Serga, A.A., Chumak, A.V., Hillebrands, B.: YIG magnonics. J. Phys. D 43, 264002 (2010)

    Article  ADS  Google Scholar 

  5. Tomasello, R., Martinez, E., Zivieri, R., Torres, L., Carpentieri, M., Finocchio, G.: A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014)

    Article  ADS  Google Scholar 

  6. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Hillebrands, B.: Magnon spintronics. Nat. Phys. 11, 453–461 (2015)

    Article  Google Scholar 

  7. Kozhevnikov, A., Gertz, F., Dudko, G., Filimonov, Y., Khitun, A.: Pattern recognition with magnonic holographic memory device. Appl. Phys. Lett. 106, 142409 (2015)

    Article  ADS  Google Scholar 

  8. Csaba, G., Papp, A., Porod, W.: Spin-wave based realization of optical computing primitives. J. Appl. Phys. 115, 17C741 (2014)

    Article  Google Scholar 

  9. Sluka, V., Schneider, T., Gallardo, R.A., Kakay, A., Weigand, M., Warnatz, T., Mattheiss, R., Roldan-Molina, A., Landeros, P., Tiberkevich, V., Slavin, A., Schutz, G., Erbe, A., Deac, A., Lindner, J., Raabe, J., Fassbender, J., Wintz, S.: Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nat. Nanotechnol. 14, 328–333 (2019)

    Article  ADS  Google Scholar 

  10. Albisetti, E., Pettio, D., Sala, G., Silvani, R., Tacchi, S., Finizio, S., Wintz, S., Calo, A., Zheng, X., Raabe, J., Riedo, E., Bertacco, R.: Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Commun. Phys. 1, 56 (2018)

    Article  Google Scholar 

  11. Winter, J.M.: Bloch wall excitation. Application to nuclear resonance in a Bloch wall. Phys. Rev. 124, 452–459 (1961)

  12. Xing, X., Zhou, Y.: Fiber optics for spin waves. NPG Asia Mater. 8, e246 (2016)

    Article  Google Scholar 

  13. Wagner, K., Kakay, A., Schultheiss, K., Henschke, A., Sebastian, T., Schultheiss, H.: Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, 432–436 (2016)

    Article  ADS  Google Scholar 

  14. Garcia-Sanchez, F., Borys, P., Soucaille, R., Adam, J.-P., Stamps, R.L., Kim, J.-V.: Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  15. Wang, X.S., Zhang, H.W., Wang, X.R.: Topological magnonics: a paradigm for spin-wave manipulation and device design. Phys. Rev. Appl. 9, 024029 (2018)

    Article  ADS  Google Scholar 

  16. Yan, P., Wang, X.S., Wang, X.R.: All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011)

    Article  ADS  Google Scholar 

  17. Xing, X., Pong, P.W.T., Åkerman, J., Zhou, Y.: Paving spin-wave fibers in magnonic nanocircuits using spin-orbit torque. Phys. Rev. Appl. 7, 054016 (2017)

    Article  ADS  Google Scholar 

  18. Park, H.-K., Lee, J.-H., Yang, J., Kim, S.-K.: Interaction of spin waves propagating along narrow domain walls with a magnetic vortex in a thin-film-nanostrip cross-structure. J. Appl. Phys. 127, 183906 (2020)

    Article  ADS  Google Scholar 

  19. Wang, X.S., Su, Y., Wang, X.R.: Topologically protected unidirectional edge spin waves and beam splitter. Phys. Rev. B 95, 014435 (2017)

    Article  ADS  Google Scholar 

  20. Lan, J., Yu, W., Wu, R., Xiao, J.: Spin-wave diode. Phys. Rev. X 5, 041049 (2015)

    Google Scholar 

  21. Kostylev, M.P., Serga, A.A., Schneider, T., Leven, B., Hillebrands, B.: Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005)

    Article  ADS  Google Scholar 

  22. Xing, X., Wang, T., Zhou, Y.: Amplifying spin waves along Néel domain wall by spin–orbit torque. Appl. Phys. Lett. 118, 062405 (2021)

    Article  ADS  Google Scholar 

  23. Khvalkovskiy, A.V., Cros, V., Apalkov, D., Nikitin, V., Krounbi, M., Zvezdin, K.A., Anane, A., Grollier, J., Fert, A.: Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013)

    Article  ADS  Google Scholar 

  24. Jiang, W., Zhang, X., Yu, G., Zhang, W., Wang, X., Jungfleisch, M.B., Pearson, J.E., Cheng, X., Heinonen, O., Wang, K.L., Zhou, Y., Hoffmann, A., te Velthuis, S.G.E.: Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017)

    Article  Google Scholar 

  25. Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.-T., Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., Wang, K.L.: Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014)

    Article  ADS  Google Scholar 

  26. Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  ADS  Google Scholar 

  27. Ando, K., Takahashi, S., Harii, K., Sasage, K., Ieda, J., Maekawa, S., Saitoh, E.: Electric manipulation of spin relaxation using the spin hall effect. Phys. Rev. Lett. 101, 036601 (2008)

    Article  ADS  Google Scholar 

  28. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: The design and verification of MuMax3. AIP Adv. 4, 107133 (2014)

    Article  ADS  Google Scholar 

  29. Litzius, K., Lemesh, I., Kruger, B., Bassirian, P., Caretta, L., Richter, K., Buttner, F., Sato, K., Tretiakov, O.A., Forster, J., Reeve, R.M., Weigand, M., Bykova, L., Stoll, H., Schutz, G., Beach, G.S.D., Klaui, M.: Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017)

    Article  Google Scholar 

  30. Woo, S., Litzius, K., Kruger, B., Im, M.Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.A., Fischer, P., Klaui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)

    Article  ADS  Google Scholar 

  31. Legrand, W., Maccariello, D., Reyren, N., Garcia, K., Moutafis, C., Moreau-Luchaire, C., Coffin, S., Bouzehouane, K., Cros, V., Fert, A.: Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017)

    Article  ADS  Google Scholar 

  32. Emori, S., Bauer, U., Ahn, S.M., Martinez, E., Beach, G.S.D.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)

    Article  ADS  Google Scholar 

  33. Thiaville, A., Rohart, S., Jue, E., Cros, V., Fert, A.: Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012)

    Article  ADS  Google Scholar 

  34. Hu, B., Wang, X.R.: Instability of Walker propagating domain wall in magnetic nanowires. Phys. Rev. Lett. 111, 027205 (2013)

    Article  ADS  Google Scholar 

  35. Wang, X.S., Yan, P., Shen, Y.H., Bauer, G.E.W., Wang, X.R.: Domain wall propagation through spin wave emission. Phys. Rev. Lett. 109, 167209 (2012)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No. 11774069 and the Guangdong Provincial Natural Science Foundation of China under Grant No. 2022A1515010605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xing, X. Tailoring Bloch-type Stripe Domain Wall by Spin–orbit Torque for Reconfigurable Magnonic Waveguides. J Supercond Nov Magn 35, 3249–3254 (2022). https://doi.org/10.1007/s10948-022-06385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06385-4

Keywords

Navigation