Skip to main content
Log in

Effect of Oxygen Vacancies on Ferromagnetism of Cu-Doped BaSnO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

As a cubic perovskite structure material with a wide bandgap of 3.1 eV, BaSnO3 has various functional applications due to its excellent light transmission, electric conductivity, and heat resistance. By doping with a small amount of transition, metal ions may further introduce ferromagnetism in BaSnO3 and extend its functions to spintronics. In this work, 5% Cu ions (atomic ratio) have been doped into BaSnO3 (Ba0.95Cu0.05SnO3) prepared by solid state reaction, which is further annealed in argon or oxygen atmosphere to obtain different concentrations of oxygen vacancies. Clear room temperature ferromagnetism with saturated magnetization of about 0.0025 emu/g has been observed in the as-prepared Cu-doped BaSnO3, which is strongly suppressed after annealing in both argon and oxygen conditions. First-principles calculations suggest that the magnetic properties of Cu-doped BaSnO3 may come from the ferromagnetic Cu clusters embedding in BaSnO3. In addition, oxygen vacancies in the appropriate position help to strengthen the ferromagnetic coupling between adjacent Cu ions. Our results clearly demonstrate the fine tuning of oxygen vacancies, not only concentration, but also locations, may significantly influence the magnetic states of Cu-doped BaSnO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Islam, I., Khandy, S.A., Zaman, M.B., Hafiz, A.K., Siddiqui, A.M., Chai, J.D.: Growth and characterization of crystalline BaSnO3 perovskite nanostructures and the influence of heavy Mn doping on its properties. J. Alloy. Compd. 867, 158900 (2021). https://doi.org/10.1016/j.jallcom.2021.158900

    Article  Google Scholar 

  2. Mitzi, D.B.: Introduction: perovskites. Chem. Rev. 119, 3033–3035 (2019). https://doi.org/10.1021/acs.chemrev.8b00800

    Article  Google Scholar 

  3. Zhang, Y., Cui, Z., Zhu, L., Zhao, Z., Liu, H., Wu, Q., Wang, J., Huang, H., Fu, Z., Lu, Y.: Negative effect of oxygen vacancies on ferromagnetism in Ru-doped BaSnO3 materials. Appl. Phys. Lett. 117, 052406 (2020). https://doi.org/10.1063/5.0005810

    Article  ADS  Google Scholar 

  4. John, J., Suresh, S., Pillai, S.S., Philip, R., Pillai, V.P.M.: Structural, morphological, magnetic and optical limiting performance of Ni doped BaSnO3. J. Electron. Mater. 50, 5868–5880 (2021). https://doi.org/10.1007/s11664-021-09116-y

    Article  ADS  Google Scholar 

  5. Alaan, U.S., N’Diaye, A.T., Shafer, P., Arenholz, E., Suzuki, Y.: Structure and magnetism of Fe-doped BaSnO3 thin films. AIP Adv. 7, 055716 (2017). https://doi.org/10.1063/1.4977772

    Article  ADS  Google Scholar 

  6. John, J., Suresh, S., Pillai, S.S., Philip, R., Pillai, V.P.M.: Effect of Fe doping on the structural, morphological, optical, magnetic and dielectric properties of BaSnO3. J. Mater. Sci.: Mater. Electron. 32, 11763–11780 (2021). https://doi.org/10.1007/s10854-021-05806-9

    Article  Google Scholar 

  7. Balamurugan, K., Kumar, N.H., Chelvane, J.A., Santhosh, P.N.: Room temperature ferromagnetism in Fe-doped BaSnO3. J Alloy Compd 472, 9–12 (2009). https://doi.org/10.1016/j.jallcom.2008.04.096

    Article  Google Scholar 

  8. Manju, M.R., Kumar, V.P., Dayal, V.: Investigation of ferromagnetic properties in Fe/Co substituted BaSnO3 perovskite stannates. Physica B 500, 14–19 (2016). https://doi.org/10.1016/j.physb.2016.07.030

    Article  ADS  Google Scholar 

  9. Balamurugan, K., Kumar, N.H., Ramachandran, B., Rao, M.S.R., Chelvane, J.A., Santhosh, P.N.: Magnetic and optical properties of Mn-doped BaSnO3. Solid State Commun. 149, 884–887 (2009). https://doi.org/10.1016/j.ssc.2009.02.037

    Article  ADS  Google Scholar 

  10. Avinash, M., Muralidharan, M., Sivaji, K.: Structural, optical and magnetic behaviour of Cr doped BaSnO3 perovskite nanostructures. Physica B 570, 157–165 (2019). https://doi.org/10.1016/j.physb.2019.06.015

    Article  ADS  Google Scholar 

  11. Sumithra, S., Jaya, N.V.: Tunable optical behaviour and room temperature ferromagnetism of cobalt-doped BaSnO3 nanostructures. J. Supercond. Novel Magn. 31, 2777–2787 (2018). https://doi.org/10.1007/s10948-017-4504-8

    Article  Google Scholar 

  12. Buchholz, D.B., Chang, R.P.H., Song, J.H., Ketterson, J.B.: Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 87, 082504 (2005). https://doi.org/10.1063/1.2032588

    Article  ADS  Google Scholar 

  13. Zhou, X., Wang, E., Lao, X., Wang, Y., Yuan, H.: Oxygen vacancy mediated room temperature ferromagnetism in Cu-doped LiNbO3 thin films. J. Magn. Magn. Mater. 527, 167775 (2021). https://doi.org/10.1016/j.jmmm.2021.167775

    Article  Google Scholar 

  14. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  15. Ordejón, P., Artacho, E., Soler, J.M.: Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53, R10441–R10444 (1996). https://doi.org/10.1103/physrevb.53.r10441

    Article  ADS  Google Scholar 

  16. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  ADS  Google Scholar 

  17. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/s0567739476001551

    Article  ADS  Google Scholar 

  18. Alaan, U.S., Wong, F.J., Ditto, J.J., Robertson, A.W., Lindgren, E., Prakash, A., Haugstad, G., Shafer, P., N'Diaye, A.T., Johnson, D., Arenholz, E., Jalan, B., Browning, N.D., Suzuki, Y.: Magnetism and transport in transparent high-mobility BaSnO3 films doped with La, Pr, Nd, and Gd. Phys. Rev. Mater. 3, (2019). https://doi.org/10.1103/physrevmaterials.3.124402

  19. Alagdal, I.A., West, A.R.: Oxygen stoichiometry, conductivity and gas sensing properties of BaSnO3. Journal of Materials Chemistry C. 4, 4770–4777 (2016). https://doi.org/10.1039/c6tc01007e

    Article  Google Scholar 

  20. Deepa, A.S., Vidya, S., Manu, P.C., Solomon, S., John, A., Thomas, J.K.: Structural and optical characterization of BaSnO3 nanopowder synthesized through a novel combustion technique. J. Alloy. Compd. 509, 1830–1835 (2011). https://doi.org/10.1016/j.jallcom.2010.10.056

    Article  Google Scholar 

  21. Azad, A.M., Hon, N.C.: Characterization of BaSnO3-based ceramics. J. Alloy. Compd. 270, 95–106 (1998). https://doi.org/10.1016/s0925-8388(98)00370-3

    Article  Google Scholar 

  22. Balamurugan, K., Kumar, N.H., Chelvane, J.A., Santhosh, P.N.: Effect of W co-doping on the optical, magnetic and electrical properties of Fe-doped BaSnO3. Physica B 407, 2519–2523 (2012). https://doi.org/10.1016/j.physb.2012.03.059

    Article  ADS  Google Scholar 

  23. Yokoi, Y., Uchida, H.: Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: correlation between cluster model calculations and temperature-programmed desorption experiments. Catal. Today 42, 167–174 (1998). https://doi.org/10.1016/s0920-5861(98)00087-x

    Article  Google Scholar 

  24. Fierro, J.L.G., Tejuca, L.G.: Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS. Appl. Surf. Sci. 27, 453–457 (1987). https://doi.org/10.1016/0169-4332(87)90154-1

    Article  ADS  Google Scholar 

  25. Ochoa-Muñoz, Y.H., Rodríguez-Páez, J.E., De Gutiérrez, R.M.: Structural and optical study of perovskite nanoparticles MSnO3 (M = Ba, Zn, Ca) obtained by a wet chemical route. Mater. Chem. Phys. 266, 124557 (2021). https://doi.org/10.1016/j.matchemphys.2021.124557

    Article  Google Scholar 

  26. Chastain, J., King, R.C., Jr.: Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie (1992)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51771053, 51971109, 51802031), the Natural Science Foundation of Jiangsu Province of China (BK20201285), the Fundamental Research Funds for the Central Universities (2242020k30039), and the open research fund of Key Laboratory of MEMS of Ministry of Education, Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijun Yuan or Qingyu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Yang, Z., Wang, X. et al. Effect of Oxygen Vacancies on Ferromagnetism of Cu-Doped BaSnO3. J Supercond Nov Magn 35, 3551–3558 (2022). https://doi.org/10.1007/s10948-022-06361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06361-y

Keywords

Navigation