Skip to main content
Log in

Density Functional Theory Study on Magnetic character and Mn Crystal Field Split Levels in Mn-doped SnO Monolayer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Two-dimensional tin (II) monoxide (SnO) has shown great potential for future electronics, optoelectronics and thin film transistor devices. Using first-principles calculations, we investigated the structural, electronic, and magnetic properties of the Mn-doped SnO monolayer. The structural stability of the materials was examined which pointed to the feasibility of Mn substitutional doping in pure SnO monolayer. The doping-induced spin polarization revealed magnetic behavior which is due to the interaction between the dopants and the surrounding Sn and O atoms. The results show that the spin-split defect states are produced in the bandgap and a magnetic moment of 4.85 µB is observed. Along with the standard GGA approach, Hubbard U correction is also adopted to calculate the electronic and magnetic properties of the doped material, which unveiled the opening of the bandgap and an increase in the magnetic moment. The magnetic behavior of the dopant is discussed in the context of crystal field splitting in the square planner geometry of the host. The magnetic coupling between magnetic moments caused by two Mn atoms in the SnO monolayer is ferromagnetic, which is due to the p–d exchange interactions. It is found that Mn-doped monolayer SnO turns out to be a promising candidate for realizing a p-type diluted-magnetic-semiconducting metal oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

The code used in this study is commercially available.

References

  1. Alkhedher, M.: Hygrothermal environment effect on the critical buckling load of FGP microbeams with initial curvature integrated by CNT-reinforced skins considering the influence of thickness stretching. Nanotechnol. Rev. 10(1), 1140–1156 (2021)

    Article  Google Scholar 

  2. Munekata, H., et al.: Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 63(17), 1849 (1989)

    Article  ADS  Google Scholar 

  3. Cibert, J., Scalbert, D.: Diluted magnetic semiconductors: Basic Physics and Optical Properties. In: Spin physics in semiconductors, pp. 477–524. Springer (2017)

    Chapter  Google Scholar 

  4. Bhatti, S., et al.: Spintronics based random access memory: a review. Mater. Today 20(9), 530–548 (2017)

    Article  Google Scholar 

  5. Ohno, H., et al.: (Ga, Mn) As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69(3), 363–365 (1996)

    Article  ADS  Google Scholar 

  6. Dietl, T., et al.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. science. 287(5455): p. 1019–1022 (2000)

  7. Verma, K.C.: Diluted magnetic semiconductor ZnO: magnetic ordering with transition metal and rare earth ions, in magnetic materials and magnetic levitation. IntechOpen. (2020) 

  8. Apostolova, I., et al.: Origin of ferromagnetism in transition metal doped BaTiO3. J. Appl. Phys. 113(20), 203904 (2013)

    Article  ADS  Google Scholar 

  9. Shakoor, A., et al.: Electronic properties of polyaniline doped with dodecylbenzenesulphonic acid (PANI-DBSA) and poly (methyl methacrylate)(PMMA) blends in the presence of hydroquinone. J. Mater. Sci.: Mater. Electron. 21(6), 603–607 (2010)

    Google Scholar 

  10. Nakayama, H., Katayama-Yoshida, H.: Theoretical prediction of magnetic properties of Ba (Ti1-xMx) O3 (M= Sc, V, Cr, Mn, Fe Co, Ni, Cu). Jpn. J. Appl. Phys. 40(12B), L1355 (2001)

    Article  ADS  Google Scholar 

  11. Li, L., et al.: Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys. Rev. B 85(17), 174430 (2012)

    Article  ADS  Google Scholar 

  12. Riaz, S., Akbar, A., Naseem, S.: Ferromagnetic effects in Cr-doped Fe 2 O 3 thin films. IEEE Trans. Magn. 50(8), 1–4 (2014)

    Google Scholar 

  13. Khan, S.U.-D., et al.: Development of low concentrated solar photovoltaic system with lead acid battery as storage device. Curr. Appl. Phys. 20(4), 582–588 (2020)

    Article  ADS  Google Scholar 

  14. Khan, S.U.-D., et al.: Techno-economic analysis of solar photovoltaic powered electrical energy storage (EES) system. Alexandria Eng. J. (2021)

  15. Grundmann, M., et al.: Oxide bipolar electronics: materials, devices and circuits. J. Phys. D Appl. Phys. 49(21), 213001 (2016)

    Article  ADS  Google Scholar 

  16. Yim, K., et al.: Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor. npj Comput. Mater. 4(1): p. 1–7 (2018)

  17. Engel, C.J., et al.: Photoelectrochemistry of porous p-Cu2O films. J. Electrochem. Soc. 155(3), F37 (2008)

    Article  Google Scholar 

  18. Hosono, H.: Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515(15), 6000–6014 (2007)

    Article  ADS  Google Scholar 

  19. Yanagi, H., et al.: Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO 2. J. Appl. Phys. 88(7), 4159–4163 (2000)

    Article  ADS  Google Scholar 

  20. Kamiya, T., Hosono, H.: Electronic structures and device applications of transparent oxide semiconductors: what is the real merit of oxide semiconductors? Int. J. Appl. Ceram. Technol. 2(4), 285–294 (2005)

    Article  Google Scholar 

  21. Caraveo-Frescas, J.A., et al.: Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano 7(6), 5160–5167 (2013)

    Article  Google Scholar 

  22. Tingting, S., Fuchun, Z., Weihu, Z.: Density functional theory study on the electronic structure and optical properties of SnO2. Rare Metal Mat. Eng. 44(10), 2409–2414 (2015)

    Article  Google Scholar 

  23. Govaerts, K., et al.: van der Waals bonding and the quasiparticle band structure of SnO from first principles. Phys. Rev. B 87(23), 235210 (2013)

    Article  ADS  Google Scholar 

  24. Farooq, M.H., et al.: Fabrication, characterization and magnetic properties of Mn-doped SnO nanostructures via hydrothermal method. Mater. Lett. 131, 350–353 (2014)

    Article  Google Scholar 

  25. Quackenbush, N., et al.: Origin of the bipolar doping behavior of SnO from X-ray spectroscopy and density functional theory. Chem. Mater. 25(15), 3114–3123 (2013)

    Article  Google Scholar 

  26. Xu, X., et al.: Free vibrations of rotating CNTRC beams in thermal environment. Case Studies in Thermal Engineering 28, 101355 (2021)

    Article  Google Scholar 

  27. van Gog, H., et al.: Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. npj 2D Mater. Appl. 3(1): p. 1–12 (2019)

  28. Shakoor, A., Anwar, H., Rizvi, T.Z.: Preparation, characterization and conductivity study of polypyrrole-pillared clay nanocomposites. J. Compos. Mater. 42(20), 2101–2109 (2008)

    Article  ADS  Google Scholar 

  29. Gündüz, B., Bulut, N.: Effects of solvents on photonic and fluorescence properties of PtOEP phosphorescent material: experimental and computational analysis. J. Mol. Liq. 316, 113865 (2020)

    Article  Google Scholar 

  30. Zhang, J.-M., et al.: Structural, electronic and magnetic properties of the 3d transition metal atoms adsorbed on boron nitride nanotubes. The European Physical Journal B 76(2), 289–299 (2010)

    Article  ADS  Google Scholar 

  31. Ju, W., et al.: Adsorption of 3d transition-metal atom on InSe monolayer: a first-principles study. Comput. Mater. Sci. 150, 33–41 (2018)

    Article  Google Scholar 

  32. Yu, G., Zhu, M., Zheng, Y.: First-principles study of 3d transition metal atom adsorption onto graphene: the role of the extended line defect. Journal of Materials Chemistry C 2(45), 9767–9774 (2014)

    Article  Google Scholar 

  33. Punnoose, A., et al.: Development of high-temperature ferromagnetism in Sn O 2 and paramagnetism in SnO by Fe doping. Phys. Rev. B 72(5), 054402 (2005)

    Article  ADS  Google Scholar 

  34. Qu, Y., et al.: Organic and inorganic passivation of p-type SnO thin-film transistors with different active layer thicknesses. Semicond. Sci. Technol. 33(7), 075001 (2018)

    Article  ADS  Google Scholar 

  35. Albar, A., Schwingenschlögl, U.: Magnetism in 3d transition metal doped SnO. J. Mater. Chem. C 4(38), 8947–8952 (2016)

    Article  Google Scholar 

  36. Coronado, E., Tsukerblat, B., Georges, R.: Exchange interactions I: mechanisms. In: Molecular magnetism: from molecular assemblies to the devices, pp. 65–84. Springer (1996)

    Chapter  Google Scholar 

  37. Zhang, F., et al.: Super-exchange theory for polyvalent anion magnets. New J. Phys. 21(5), 053033 (2019)

    Article  ADS  Google Scholar 

  38. Krstajić, P., et al.: Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors. Phys. Rev. B 70(19), 195215 (2004)

    Article  ADS  Google Scholar 

  39. Lu, Z.-L., et al.: The origins of ferromagnetism in Co-doped ZnO single crystalline films: from bound magnetic polaron to free carrier-mediated exchange interaction. Appl. Phys. Lett. 95(10), 102501 (2009)

    Article  ADS  Google Scholar 

  40. Kogan, E.: RKKY interaction in gapped or doped graphene. arXiv preprint arXiv:1211.5775, (2012)

  41. Ciechan, A., Bogusławski, P.: Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  42. Dietl, T.: Ferromagnetic semiconductors. Semicond. Sci. Technol. 17(4), 377 (2002)

    Article  ADS  Google Scholar 

  43. Jungwirth, T., et al.: Curie temperature trends in (III, Mn) V ferromagnetic semiconductors. Phys. Rev. B 66(1), 012402 (2002)

    Article  ADS  Google Scholar 

  44. Wang, Y., Li, S., Yi, J.: Transition metal-doped tin monoxide monolayer: a first-principles study. The Journal of Physical Chemistry C 122(8), 4651–4661 (2018)

    Article  Google Scholar 

  45. Cheng, X., Guan, L., Tao, J.: Prediction of directional magnetic-exchange coupling in Mn doped γ-InSe monolayer. Results in Physics 14, 102416 (2019)

    Article  Google Scholar 

  46. Fang, Q., et al.: Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS 2. Phys. Chem. Chem. Phys. 20(1), 553–561 (2018)

    Article  Google Scholar 

  47. Saji, K.J., et al.: 2D tin monoxide—an unexplored p-type van der waals semiconductor: material characteristics and field effect transistors. Advanced Electronic Materials 2(4), 1500453 (2016)

    Article  Google Scholar 

  48. Bolotin, K.I., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Article  ADS  Google Scholar 

  49. Houssa, M., et al.: Ferromagnetism in two-dimensional hole-doped SnO. AIP Adv. 8(5), 055010 (2018)

    Article  ADS  Google Scholar 

  50. Zhou, W., Umezawa, N.: Band gap engineering of bulk and nanosheet SnO: an insight into the interlayer Sn–Sn lone pair interactions. Phys. Chem. Chem. Phys. 17(27), 17816–17820 (2015)

    Article  Google Scholar 

  51. Han, R., Yan, Y.: Magnetism induced by Mn atom doping in SnO monolayer. Chin. Phys. B 27(11), 117505 (2018)

    Article  ADS  Google Scholar 

  52. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  53. Te Velde, G.T., et al.: Chemistry with ADF. J. Comput. Chem. 22(9): p. 931–967 (2001)

  54. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  55. Khera, E.A., et al.: ab initio study of oxygen vacancy effects on structural, electronic and thermoelectric behavior of AZr1-xMxO3 (A= Ba, Ca, Sr; M= Al, Cu, x= 0.25) for application of memory devices. J. Molecul. Graph. Model. 103: 107825 (2021)

  56. Govaerts, K., Partoens, B., Lamoen, D.: Extended homologous series of Sn–O layered systems: a first-principles study. Solid State Commun. 243, 36–43 (2016)

    Article  ADS  Google Scholar 

  57. Grimme, S., et al.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  58. Kripalani, D.R., et al.: Strain-driven superplasticity of ultrathin tin (II) oxide films and the modulation of their electronic properties: a first-principles study. Phys. Rev. B 100(21), 214112 (2019)

    Article  ADS  Google Scholar 

  59. Kripalani, D.R., et al.: Vacancies and dopants in two-dimensional tin monoxide: an ab initio study. arXiv preprint arXiv:2011.10203, (2020)

  60. Brown, J.J., Page, A.J.: Reaction pathways in the solid state and the Hubbard U correction. J. Chem. Phys. 154(12), 124121 (2021)

    Article  ADS  Google Scholar 

  61. Zhou, F., et al.: First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B 70(23), 235121 (2004)

    Article  ADS  Google Scholar 

  62. Wang, L., Maxisch, T., Ceder, G.: Oxidation energies of transition metal oxides within the GGA+ U framework. Phys. Rev. B 73(19), 195107 (2006)

    Article  ADS  Google Scholar 

  63. Jain, A., et al.: Formation enthalpies by mixing GGA and GGA+ U calculations. Phys. Rev. B 84(4), 045115 (2011)

    Article  ADS  Google Scholar 

  64. Marquina, J., et al.: Theoretical study of Mn doping effects and O or Zn vacancies on the magnetic properties in wurtzite ZnO. Chin. J. Phys. 63, 63–69 (2020)

    Article  Google Scholar 

  65. Khan, M.J.I., et al.: Exploring structural, electronic, magnetic, and optical properties of Mn doped Mos2 with and without Hubbard correction. Electronic, Magnetic, and Optical Properties of Mn Doped Mos2 with and Without Hubbard Correction.

  66. Chibani, H., Yahi, H., Ouettar, C.: Tuning the magnetic properties of FeTe2 monolayer doped by (TM: V, Mn, and Co). J. Magn. Magn. Mater. 552, 169204 (2022)

    Article  Google Scholar 

  67. Moore, G.C., et al.: High-throughput determination of Hubbard U and Hund J values for transition metal oxides via linear response formalism. arXiv preprint arXiv:2201.04213, (2022)

  68. Van Lenthe, E., Baerends, E.J.: Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 24(9), 1142–1156 (2003)

    Article  Google Scholar 

  69. Allen, J.P., et al.: Tin monoxide: structural prediction from first principles calculations with van der waals corrections. J. Phys. Chem. C 115(40), 19916–19924 (2011)

    Article  Google Scholar 

  70. Lide, D.R.: CRC handbook of chemistry and physics. Vol. 85. CRC press (2004)

  71. Myers, R.T.: The periodicity of electron affinity. J. Chem. Educ. 67(4), 307 (1990)

    Article  Google Scholar 

  72. Hussain, M.I., Khalil, R.A., Hussain, F.: Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden-Popper layered perovskites Bi2XO4 (X= Be, Mg) using tran and Blaha-Modified Becke-Johnson approach for optoelectronic applications. Energ. Technol. 9(5), 2001026 (2021)

    Article  Google Scholar 

  73. Bilgili, O.: The effects of Mn doping on the structural and optical properties of ZnO. Acta Physica. Polonica. A. 136(3) (2019)

  74. Undre, P.G., et al.: Structural, morphological and magnetic properties of Cu2+ doped ZnO nanoparticles. in J. Phys: Conf.e Series IOP Publishing. (2020)

  75. Long, R., English, N.J.: Magnetic properties of first-row element-doped ZnS semiconductors: a density functional theory investigation. Phys. Rev. B 80(11), 115212 (2009)

    Article  ADS  Google Scholar 

  76. Lu, Y.-B., et al.: Investigation of magnetic properties induced by group-V element in doped ZnO. Phys. Chem. Chem. Phys. 15(14), 5208–5214 (2013)

    Article  Google Scholar 

  77. Choi, M., et al.: Understanding of relationship between dopant and substitutional site to develop novel phase-change materials based on In3SbTe2. Japanese J. Appl. Phys. 58(SB): SBBB02 (2019)

  78. Yao, G., et al.: Electronic structure and magnetism of V-doped AlN. J. Magn. Magn. Mater. 331, 117–121 (2013)

    Article  ADS  Google Scholar 

  79. Lang, Q.-Z., et al.: The magnetic, optical and electronic properties of Mn–X (X= O, Se, Te, Po) co-doped MoS2 monolayers via first principle calculation. Materials Research Express 7(11), 116301 (2020)

    Article  ADS  Google Scholar 

  80. Malyi, O.I., Sopiha, K.V., Persson, C.: Energy, phonon, and dynamic stability criteria of 2d materials. arXiv preprint arXiv:1901.07202, (2019)

  81. Yang, J.-W., An, L.: Structure, elastic characteristic, ideal strengths, and phonon stability of binary uranium intermetallic UGe 3 of AuCu 3-type. Phys. Chem. Chem. Phys. 22(3), 1381–1391 (2020)

    Article  Google Scholar 

  82. Yang, F., et al.: Tailoring bandgap of perovskite BaTiO3 by transition metals Co-doping for visible-light photoelectrical applications: a first-principles study. Nanomaterials 8(7), 455 (2018)

    Article  Google Scholar 

  83. Tao, J., Guan, L.: Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N. O and F adatoms. Scientific reports 7(1), 1–7 (2017)

    Google Scholar 

  84. Allen, J.P., et al.: Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C 1(48), 8194–8208 (2013)

    Article  Google Scholar 

  85. Ma, Z., et al.: Structure and properties of phosphorene-like IV-VI 2D materials. Nanotechnology 27(41), 415203 (2016)

    Article  Google Scholar 

  86. Seixas, L., et al.: Multiferroic two-dimensional materials. Phys. Rev. Lett. 116(20), 206803 (2016)

    Article  ADS  Google Scholar 

  87. Almamoun, O., Ma, S.: Effect of Mn doping on the structural, morphological and optical properties of SnO2 nanoparticles prepared by Sol-gel method. Mater. Lett. 199, 172–175 (2017)

    Article  Google Scholar 

  88. Dietl, T.: Hole states in wide band-gap diluted magnetic semiconductors and oxides. Phys. Rev. B 77(8), 085208 (2008)

    Article  ADS  Google Scholar 

  89. Alidoust, N., Lessio, M., Carter, E.A.: Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: a theoretical study. J. Appl. Phys. 119(2), 025102 (2016)

    Article  ADS  Google Scholar 

  90. Jebasty, R.M., Sjåstad, A.O., Vidya, R.: Prediction of intermediate band in Ti/V doped γ-In 2 S 3. RSC Adv. 12(3), 1331–1340 (2022)

    Article  ADS  Google Scholar 

  91. Goudon, T., Miljanović, V., Schmeiser, C.: On the Shockley–Read–Hall model: generation-recombination in semiconductors. SIAM J. Appl. Math. 67(4), 1183–1201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  92. Senthilkumaar, S., et al.: Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11(1), 6–12 (2008)

    Article  Google Scholar 

  93. Nie, K., Wang, X., Mi, W.: Electronic structure and magnetic properties of 3d transition-metal atom adsorbed SnO monolayers. Appl. Surf. Sci. 493, 404–410 (2019)

    Article  ADS  Google Scholar 

  94. Bennett, L.J., Jones, G.: The influence of the Hubbard U parameter in simulating the catalytic behaviour of cerium oxide. Phys. Chem. Chem. Phys. 16(39), 21032–21038 (2014)

    Article  Google Scholar 

  95. Delerue, C., Lannoo, M., Langer, J.M.: Transition-metal impurities in semiconductors and heterojunction band lineups. Phys. Rev. Lett. 61(2), 199 (1988)

    Article  ADS  Google Scholar 

  96. Morgan, J.J.: Kinetics of reaction between O2 and Mn (II) species in aqueous solutions. Geochim. Cosmochim. Acta 69(1), 35–48 (2005)

    Article  ADS  Google Scholar 

  97. Majid, A., et al.: A computational study of magnetic exchange interactions of 3d and 4f electrons in Ti-Ce co-doped AlN. Mater. Chem. Phys. 179, 316–321 (2016)

    Article  Google Scholar 

  98. Majid, A., et al.: Ti Ga–VN complexes in GaN: a new prospect of carrier mediated ferromagnetism. RSC Adv. 5(106), 87437–87444 (2015)

    Article  ADS  Google Scholar 

  99. Kaczkowski, J., Jezierski, A.: DFT+ U calculations of transition metal doped AlN. Acta Phys. Pol., A 116(5), 924–926 (2009)

    Article  ADS  Google Scholar 

  100. Sandratskii, L., Bruno, P., Kudrnovský, J.: On-site Coulomb interaction and the magnetism of (GaMn) N and (GaMn) As. Phys. Rev. B 69(19), 195203 (2004)

    Article  ADS  Google Scholar 

  101. Aliabad, H.R., Arabshahi, H., Aliabadi, A.H.: The effect of Hubbard potential on effective mass of carriers in doped Indium oxide. International Journal of Physical Sciences 7(5), 696–708 (2012)

    Google Scholar 

  102. Goodenough, J.: Jahn-Teller phenomena in solids. Annu. Rev. Mater. Sci. 28(1), 1–27 (1998)

    Article  ADS  Google Scholar 

  103. Khalid, H.H., Erkan, S., Bulut, N.: Halogens effect on spectroscopy, anticancer and molecular docking studies for platinum complexes. Optik. 166324 (2021)

  104. Ganga, B.G., Santhosh, P.N., Nanda, B.R.K.: Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide. J. Phys.: Condens. Matter 29(15), 155802 (2017)

    ADS  Google Scholar 

  105. Himmetoglu, B., et al.: Hubbard-corrected DFT energy functionals: The LDA+ U description of correlated systems. Int. J. Quantum Chem. 114(1), 14–49 (2014)

    Article  Google Scholar 

  106. Pickett, W., Erwin, S., Ethridge, E.: Reformulation of the LDA+ U method for a local-orbital basis. Phys. Rev. B 58(3), 1201 (1998)

    Article  ADS  Google Scholar 

  107. Ren, J., Zhang, H., Cheng, X.: Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. Int. J. Quantum Chem. 113(19), 2243–2250 (2013)

    Article  Google Scholar 

  108. Khalatbari, H., et al.: Band structure engineering of NiS 2 monolayer by transition metal doping. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  109. Zhong, G., et al.: Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN. Physica B 407(18), 3818–3827 (2012)

    Article  ADS  Google Scholar 

  110. Khan, M.S., et al.: Theoretical investigation of optoelectronic and magnetic properties of Co-doped ZnS and (Al, Co) co-doped ZnS. Comput. Mater. Sci. 174, 109491 (2020)

    Article  Google Scholar 

  111. Morrish, A.H.: The physical principles of magnetism. (2001)

  112. Sato, K., Katayama-Yoshida, H.: First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17(4), 367 (2002)

    Article  ADS  Google Scholar 

  113. Abdel-Baset, T., Abdel-Hafiez M.: Effect of metal dopant on structural and magnetic properties of ZnO nanoparticles. J. Mater. Sci.: Mater. Electron.  1–13 (2021) 

  114. Shen, L., et al.: Mechanism of ferromagnetism in nitrogen-doped ZnO: first-principle calculations. Phys. Rev. B 78(7), 073306 (2008)

    Article  ADS  Google Scholar 

  115. Twardowski, A.: New pd exchange interaction in Cr-based diluted magnetic semiconductors. in Materials Science Forum. Trans. Tech. Publ. (1995)

  116. Ueda, S., et al.: Electronic structures and p− d exchange interaction of Mn-doped diluted magnetic semiconductors. Phys. Rev. B 78(20), 205206 (2008)

    Article  ADS  Google Scholar 

  117. Djaja, N.F., Montja, D.A.: and R. The effect of Co incorporation into ZnO nanoparticles, Saleh (2013)

    Google Scholar 

  118. Wang, B., et al.: A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge. Theoret. Chem. Acc. 138(12), 1–9 (2019)

    Article  Google Scholar 

  119. Majid, A., et al.: A computational study of ferromagnetic exchange interactions and charge transfer in codoped gallium nitride. J. Supercond. Novel Magn. 31(2), 475–481 (2018)

    Article  Google Scholar 

  120. Yu, F., Zhang, L., Jiang, F.: Rationalizing the control of interfacial charge transfer directions in halide perovskite materials via additives: a first principles investigation. Appl. Surf. Sci. 481, 1178–1184 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AM: data curation, writing — original draft preparation; AM: conceptualization, methodology, software, supervision, visualization, discussions.

Corresponding author

Correspondence to Abdul Majid.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubeen, A., Majid, A. Density Functional Theory Study on Magnetic character and Mn Crystal Field Split Levels in Mn-doped SnO Monolayer. J Supercond Nov Magn 35, 2975–2986 (2022). https://doi.org/10.1007/s10948-022-06355-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06355-w

Keywords

Navigation