Skip to main content
Log in

HTS Joint Resistance for High-Field Magnets: Experiment and Temperature-Dependent Modeling

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Benefiting from the high critical temperature and high critical current, the second-generation high-temperature superconducting (HTS) tape is widely used in various large-scale magnet applications. Due to the length limitation of producing superconducting tapes, the joints between superconducting tapes are inevitable for large-scale high-field magnets. The joule loss from the joint resistance under over-current conditions is even larger, which will cause a sharp temperature rise, and will also decay the critical current of the superconducting tape. In this paper, 3 configurations of HTS joints are adopted to model the joint resistance characteristics using new methods, whose joint resistance model is coupled with the real-time operating temperature. The results show that the proposed temperature-dependent HTS joint resistance model well matches the experiment and analytical solution. Therefore, both the experiment and novel modeling investigation can provide useful and accurate references for the superconducting joints in real devices, and the temperature-dependent HTS joint resistance model can play an important role in giving early warnings of the over-current for HTS tapes and high-field magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, X.Y, Pang, Z., Gou, H.Y., Xie, Q., Zhao, R.B., Shi, Z.H., Shen, B.Y.: Intelligent design of large-size HTS magnets for SMES and high-field applications: using a self-programmed GUI tool. Supercond. Sci. Technol. 34(9), 095008 (2021)

  2. Lee, J.T., Park, S.H., Park, J., Kim, J., Kim, Y.G., Kim, H.W., et al.: Preliminary conceptual design study on HTS toroidal field coil for compact high magnetic field tokamak. IEEE Trans. Appl. Supercond. 31(5), 4202207 (2021)

    Google Scholar 

  3. Chen, X.Y., Zhang, M.S., Jiang, S., Gou, H.Y., Xie, Q., Chen, Y., Yang, R.H.: An SMES-based current-fed transformerless series voltage restorer for DC load protection. IEEE Trans. Power Electron. 36(9), 9698–9703 (2021)

    Article  ADS  Google Scholar 

  4. Rafiee, Z., Najafi, S.S., Rafiee, M., Aghamohammadi, M.R., Pourgholi, M.: Optimized control of coordinated series resistive limiter and SMES for improving LVRT using TVC in DFIG-base wind farm. Physica C: Superconductivity and its Applications 570, 1353607 (2020)

    Article  ADS  Google Scholar 

  5. Chen, X.Y., Xie, Q., Bian, X.M., Shen, B.Y.: A novel concept of SMES-based interline DC dynamic voltage restorer. CSEE Journal of Power and Energy Systems. 8(1), 238–248 (2022)

  6. Shen, B.Y., Chen, Y., Li, C., Wang, S., Chen, X.Y.: Superconducting fault current limiter (SFCL): experiment and the simulation from finite-element method (FEM) to power/energy system software. Energy 121251 (2021)

  7. Song, M., Dai, S., Sheng, C., Zhong, L., Duan, X., Yan, G., et al.: Design and performance tests of a 160 kV/1.0 kA DC superconducting fault current limiter. Physica C: Superconductivity and its Applications 585, 1353871 (2021)

  8. Chen, Y., Jiang, S., Chen, X., Zheng, P., Che, T.: Preliminary design of a superconducting LVDC power cable for tokamak application. IEEE Trans. Appl. Supercond. 31(8), 4804204 (2021)

    Google Scholar 

  9. Das, I., Sahoo, V., Rao, V.V.: Structural analysis of 2G HTS tapes under different loading conditions for HTS power cable using finite element modeling. Physica C: Superconductivity and its Applications 1353771 (2020)

  10. Su, R., Shi, J., Yan, S., Li, P., Wang, W., Hu, Z., et al.: Numerical model of HTS cable and its electric-thermal properties. IEEE Trans. Appl. Supercond. 29(5), 4802005 (2019)

    Google Scholar 

  11. Morimura, T., Masuda, T., Yamaguchi, H., Tanazawa, M., Mimura, T.: Overcurrent characteristics on a 22 kV/12 kA HTS model cable. IEEE Trans. Appl. Supercond. 29(5), 5400805 (2019)

    Article  Google Scholar 

  12. Xu, Y., Dai, S., Ma, T., Wang, B.: Thermal stability analysis of YBCO tapes under DC overcurrent. IEEE Trans. Appl. Supercond. 31(2), 4800206 (2020)

    Google Scholar 

  13. Li, X., Ren, L., Xu, Y., Shi, J., Chen, X., Chen, G., et al.: Simulation analysis of 2D finite element axial transient temperature distribution of HTS cable. IEEE Trans. Appl. Supercond. 31(5), 5400506 (2021)

    Google Scholar 

  14. Tsotsopoulou, E., Dyśko, A., Hong, Q., Elwakeel, A., Elshiekh, M., Yuan, W., et al.: Modelling and fault current characterization of superconducting cable with high temperature superconducting windings and copper stabilizer layer. Energies 13(24), 6646 (2020)

    Article  Google Scholar 

  15. Qian, K., Shiratani, T., Terao, Y., Ohsaki, H.: Three-dimensional thermal analysis of an SFCL REBCO coil immersed in liquid nitrogen [C]//Journal of Physics: Conference Series. IOP Publishing 1054(1), 012078 (2018)

  16. Kar, S., Rao, V.V.: Comparative study on the fastest effective fault limitation for stabilized and stabilizer-free high Tc superconductors. Physica C: Superconductivity and its Applications 541, 50–54 (2017)

    Article  ADS  Google Scholar 

  17. Noguchi, S., Park, D., Choi, Y., Lee, J., Li, Y., Michael, P.C., et al.: Quench analyses of the MIT 1.3-GHz LTS/HTS NMR magnet. IEEE Trans. Appl. Supercond. 29(5), 4301005 (2019)

  18. Lecrevisse, T., Chaud, X., Debray, F., Devaux, M., Fazilleau, P., Juster, F.P., et al.: Quench propagation in YBCO pancake: experimental and computational results. IEEE Trans. Appl. Supercond. 23(3), 4601805 (2013)

    Article  ADS  Google Scholar 

  19. Kiss, T., Inoue, M., Higashikawa, K., Suzuki, T., Lyu, L., Takasaki, K., et al.: Comparison between Bi-2223 tape and RE-123 coated conductor from the view point of current transport properties influencing thermal stability. Cryogenics 80, 221–228 (2016)

    Article  ADS  Google Scholar 

  20. Liang, S., Ren, L., Ma, T., Xu, Y., Tang, Y., Tan, X., et al.: Study on quenching characteristics and resistance equivalent estimation method of second-generation high temperature superconducting tape under different overcurrent. Materials 12(15), 2374 (2019)

    Article  ADS  Google Scholar 

  21. Noguchi, S., Itoh, R., Hahn, S., Iwasa, Y.: Numerical simulation of superconducting coil wound with no-insulation NbTi wire. IEEE Trans. Appl. Supercond. 24(3), 4900504 (2013)

    Google Scholar 

  22. Campbell, A.M.: An introduction to numerical methods in superconductors. J. Supercond. Nov. Magn. 24(1–2), 27–33 (2011)

    Article  Google Scholar 

  23. Grilli, F., Stavrev, S., Le Floch, Y., Costa-Bouzo, M., Vinot, E., Klutsch, I., et al.: Finite-element method modeling of superconductors: from 2-D to 3-D. IEEE Trans. Appl. Supercond. 15(1), 17–25 (2005)

    Article  ADS  Google Scholar 

  24. Qian, K., Terao, Y., Ohsaki, H.: Three-dimensional electromagnetic and thermal field coupled analysis of different types of REBCO coils under overcurrent conditions. IEEE Trans. Appl. Supercond. 31(5), 4901308 (2021)

    Article  Google Scholar 

  25. Kim, Y., Bascuñán, J., Lecrevisse, T., Hahn, S., Voccio, J., Park, D.K., et al.: YBCO and Bi2223 coils for high field LTS/HTS NMR magnets: HTS-HTS joint resistivity. IEEE Trans. Appl. Supercond. 23(3), 6800704 (2013)

    Article  Google Scholar 

  26. Park, D.K., Ahn, M.C., Kim, H.M., et al.: Analysis of a joint method between superconducting YBCO coated conductors. IEEE Trans. Appl. Supercond. 17(2), 3266–3269 (2007)

    Article  ADS  Google Scholar 

  27. Guo, C., Wang, H., Cai, X., Luo, W., Huang, Z., Zhang, Y., et al.: High performance superconducting joint for MgB2 films. Physica C: Superconductivity and its Applications 584, 1353863 (2021)

    Article  ADS  Google Scholar 

  28. Huang, D., Gu, H., Zhang, H., Dong, Z., Shang, H., Xu, W., et al.: Bending properties of solder joint of YBCO coated conductors by etching copper stabilizer. Physica C: Superconductivity and its Applications 562, 42–47 (2019)

    Article  ADS  Google Scholar 

  29. Lécrevisse, T., Bascuñán, J., Hahn, S., Kim, Y., Song, J., Iwasa, Y.: Tape-to-tape joint resistances of a magnet assembled from (RE)BCO double-pancake coils. IEEE Trans. Appl. Supercond. 25(3), 6602505 (2014)

    Google Scholar 

  30. Shin, H.S., Dedicatoria, M.J.: Comparison of the bending strain effect on transport property in lap-and butt-jointed coated conductor tapes. IEEE Trans. Appl. Supercond. 20(3), 1541–1544 (2010)

    Article  ADS  Google Scholar 

  31. Ito, S., Ohinata, T., Bromberg, L., Hashizume, H.: Structure improvement and joint resistance estimation in demountable butt and edge joints of a stacked REBCO conductor within a metal jacket. IEEE Trans. Appl. Supercond. 23(3), 4802408 (2013)

    Article  ADS  Google Scholar 

  32. Feng, B., Chen, W., Ito, S., Yusa, N., Hashizume, H., Ribeiro, A.L., et al.: Quantitative evaluation of the delamination length in mechanical lap joints of high-temperature superconducting tapes using Lamb waves. Measurement 156, 107606 (2020)

  33. Kirchner, A., Nielsch, K., Hühne, R.: Towards a reliable bridge joint between REBCO coated conductors. J. Phys. Conf. Ser. 1559(1), 012033 (2020)

  34. Pan, Y., Wu, W., Zhen, S., Dong, F., Wang, L., Chu, J., et al.: Investigation on current distribution and joint resistance-overlap length relationship for non-superconducting Joints. IEEE Trans. Appl. Supercond. 29(2), 8800305 (2018)

    Google Scholar 

  35. Chang, K.S., Park, D.K., Yang, S.E., Kim, Y.J., Na, J.B., Kwon, N.Y., et al.: Repetitive over-current characteristics of the joints between the YBCO coated conductor. IEEE Trans. Appl. Supercond. 19(3), 2419–2422 (2009)

    Article  ADS  Google Scholar 

  36. Ma, J., Zhu, J.M., Wu, W., Sheng, J., Yao, Z.H., Li, Z.Y., et al.: Axial tension and overcurrent study on a type of mass-producible joint for ReBCO coated conductors. IEEE Trans. Appl. Supercond. 26(4), 8400505 (2016)

    Google Scholar 

  37. Shen, B.Y., Li, C., Geng, J., Zhang, X., Gawith, J., Ma, J., Liu, Y., Grilli, F., Coombs, T.A.: Power dissipation in HTS coated conductor coils under the simultaneous action of AC and DC currents and fields. Supercond. Sci. Technol. 31(7), 075005 (2018)

  38. Shen, B.Y., Grilli, F., Coombs, T.A.: Overview of H-formulation: a versatile tool for modelling electromagnetics in high temperature super-conductor applications. IEEE Access 8, 100403–100414 (2020)

    Article  Google Scholar 

  39. Zeng, L., Chen, X.Y., Feng, Y.J., Chen, Y., Xie, Q.: Temperature field simulations of a ReBCO pancake coil under pulsed overcurrent conditions. IEEE Trans. Appl. Supercond. 29(2), 5900305 (2019)

    Google Scholar 

  40. Chen, X.Y., Chen, Y., Gou, H.Y., Jiang, S., Zhang, M.S., Shen, B.Y.: A new vision of short-time and long-time AC loss measurement and modelling: a superconducting power electronic circuit. Cryogenics 118, 103348 (2021)

  41. Xie, Q., Chen, X.Y., Chen, Y., Gou, H.Y., Jiang, S., Xu, H.Y., et al.: Superconductor-circuit-temperature coupled simulation of a fault-tolerant boost converter employing superconducting fault current limiter. IEEE Trans. Appl. Supercond. 31(8), 5604205 (2021)

    Google Scholar 

  42. Zhang, M., Matsuda, K., Coombs, T.A.: New application of temperature-dependent modelling of high temperature superconductors: quench propagation and pulse magnetization. J. Appl. Phys. 112(4), 043912 (2012)

  43. Frost, W., Harper, W.L.: Heat transfer at low temperatures. Plenum, New York, NY, USA (1975). (Chapter 4)

  44. Ishiyama, A., Wang, X., Ueda, H., Yagi, M., Mukoyama, S., Kashima, N., et al.: Over-current characteristics of superconducting model cable using YBCO coated conductors. Physica C: Superconductivity 468(15–20), 2041–2045 (2008)

    Article  ADS  Google Scholar 

  45. Xiang, B., Wang, W., Li, H., Gao, L., Liu, Z., Geng, Y., et al.: Study on the influencing factors to reduce the recovery time of superconducting tapes and coils for the DC superconducting fault current limiter applications. High Voltage 1–15 (2021)

  46. Lalitha, S.L.: Low resistance splices for HTS devices and applications. Cryogenics 86, 7–16 (2017)

    Article  ADS  Google Scholar 

  47. Chang, K.S., Jo, H.C., Kim, Y.J., CheolAhn, M., Ko, T.K.: An experimental study on the joint methods between double pancake coils using YBCO coated conductors. IEEE Trans. Appl. Supercond. 21(3), 3005–3008 (2010)

    Article  ADS  Google Scholar 

  48. Miao, Q., Zhu, J.M., Cheng, M., Zhang, Z., Li, Z.Y., Wang, Y., et al.: Fabrication and characteristic tests of a novel low-resistance joint structure for YBCO coated-conductors. IEEE Trans. Appl. Supercond. 25(3), 6600705 (2015)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 51807128].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Che, Xiaoyuan Chen or Boyang Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zheng, P., Che, T. et al. HTS Joint Resistance for High-Field Magnets: Experiment and Temperature-Dependent Modeling. J Supercond Nov Magn 35, 1089–1098 (2022). https://doi.org/10.1007/s10948-022-06181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06181-0

Keywords

Navigation