Skip to main content
Log in

Magnetic Field- and Frequency-Dependent Study of the AC Susceptibility of High-Tc YBCO Single Crystal

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The temperature dependence of AC susceptibility (ACS) has been measured for a very high-quality plate-like slightly overdoped YBCO single crystal for different frequencies and AC magnetic fields. Frequency dependence of the ACS is weak irrespective of the magnetic field orientation, but significant effects of field orientation with respect to the CuO2 planes and field magnitude on real and imaginary components of fundamental ACS are observed. We have found that the magnitude of the ratio of the loss peak to the full diamagnetic signal is slightly larger in perpendicular field than that in the parallel field arrangement. The height of the loss peak saturates as full penetration of magnetic field is achieved. This saturation is achieved at a lower field amplitude when HIIc. The peak temperature, Tp, in χ″ shifts to lower temperatures with increasing magnetic field amplitude for both HIIc and HIIab. The value of Tp depends on the orientation of the magnetic field with respect to the crystallographic axes, illustrating the anisotropy in the magnetic flux dynamics. The superconducting onset transition temperature obtained from the diamagnetic shielding component of the ACS, on the other hand, does not depend on the orientation of the magnetic field. The superconducting transition width increases weakly with increasing magnetic field; the rate of this increment is more prominent for HIIc case. The Cole–Cole plot [χ″(χ′)] shows qualitatively and quantitatively almost identical features for HIIc and HIIab, with small difference in the peak positions with respect to the orientation of the magnetic field and shielding current paths. The general features of χ″(χ′) imply that there is no flux creep for the range of frequencies and AC fields employed in this investigation. The maximum value of the loss peak and its position with respect to χ′ in the Cole–Cole plot are largely consistent with the Bean critical state model. Slightly increased peak value in comparison to the predicted peak value within the Bean critical state model is probably due to a weak field dependence of Jc. The results obtained here are compared with various theoretical models and experimental findings. Notable differences are highlighted and discussed in details in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Semwal, A., Strickland, N.M., Bubendorfer, A., Naqib, S.H., Goh, S.K., Williams, G.V.M.: Supercond. Sci. Technol. 17, S506 (2004)

    Article  ADS  Google Scholar 

  2. Naqib, S.H., Semwal, A.: Physica C 425, 14 (2005)

    Article  ADS  Google Scholar 

  3. Gurevich, A.: Annu. Rev. Condens. Matter Phys. 5, 35 (2014)

    Article  ADS  Google Scholar 

  4. Hilgenkamp, H., Mannhart, J.: Rev. Mod. Phys. 74, 485 (2002)

    Article  ADS  Google Scholar 

  5. Gomory, F.: Supercond. Sci. Technol. 10, 523 (1997)

    Article  ADS  Google Scholar 

  6. Golosovsky, M., Tsindlekht, M., Davidov, D.: Supercond. Sci. Technol. 9, 1 (1996)

    Article  ADS  Google Scholar 

  7. Ainslie, M.D., Fujishiro, H.: Supercond. Sci. Technol. 28, 053002 (2015)

  8. Prozorov, R., Giannetta, R.W.: Supercond. Sci. Technol. 19, R41 (2006)

    Article  ADS  Google Scholar 

  9. Bean, C.P.: Rev. Mod. Phys. 2, 31 (1964)

    Article  ADS  Google Scholar 

  10. Anderson, P.W., Kim, Y.B.: Rev. Mod. Phys. 36, 39 (1964)

    Article  ADS  Google Scholar 

  11. Muller, K.H.: Physica C 159, 717 (1989)

    Article  ADS  Google Scholar 

  12. Clem, J.R.: Physica C 50, 153 (1988)

    Google Scholar 

  13. Ji, L., Sohn, R.H., Spalding, G.C., Lobb, C.J., Tinkham, M.: Phys. Rev. B 40, 10936 (1989)

    Article  ADS  Google Scholar 

  14. Ishida, T., Goldfarb, R.B.: Phys. Rev. B 41, 8937 (1990)

    Article  ADS  Google Scholar 

  15. Lee, C.Y., Kao, Y.H.: Physica C 241, 167 (1995)

    Article  ADS  Google Scholar 

  16. Blatter, G., Feigel’man, M.Y., Geshkenbein, Y.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  17. Kwok, W.K., Welp, U., Glatz, A., Koshelev, A.E., Kihlstrom, K.J. and Crabtree, G.W.: Crabtree, Rep. Prog. Phys. 79, 116501 (2016) 

  18. Brandt, E.H.: Rep. Prog. Phys. 58, 1465 (1995)

    Article  ADS  Google Scholar 

  19. Stoppard, O., Gugan, D.: Physica C 241, 375 (1995)

    Article  ADS  Google Scholar 

  20. Herzog, Th., Radovan, H.A., Ziemann, P., Brandt, E.H.: Phys. Rev. B 56, 2871 (1997)

    Article  ADS  Google Scholar 

  21. Clem, J.R., Sanchez, A.: Phys. Rev. B 50, 9355 (1994)

    Article  ADS  Google Scholar 

  22. Brandt, E.H.: Phys. Rev. B 58, 6523 (1998)

    Article  ADS  Google Scholar 

  23. Brandt, E.H.: Phys. Rev. B 58, 6506 (1998)

    Article  ADS  Google Scholar 

  24. Jonsson, B.J., Rao, K.V., Yun, S.H., Karlsson, U.O.: Phys. Rev. B 58, 5862 (1998)

    Article  ADS  Google Scholar 

  25. Shantsev, D.V., Galperin, Y.M., Johansen, T.H.: Phys. Rev. B 61, 9699 (2000)

    Article  ADS  Google Scholar 

  26. Qi, Y.Q., Liu, L.L.: J. Supercond. Nov. Magn 28, 1749 (2015)

    Article  Google Scholar 

  27. Elabbar, A.A.: Physica C 469, 147 (2009)

    Article  ADS  Google Scholar 

  28. Han, G.C., Ong, C.K., Xu, S.Y., Li, H.P.: Appl. Phys. Lett. 71, 1860 (1997)

    Article  ADS  Google Scholar 

  29. Nazarova, E.K., Zaleski, A.J., Nenkov, K.A., Zahariev, A.L.: Physica C 468, 955 (2008)

    Article  ADS  Google Scholar 

  30. das Virgens, M.G., García, S., Continentino, M.A., Ghivelder, L.: Phys. Rev. B 71, 064520 (2005)

  31. Naqib, S.H., Cooper, J.R., Tallon, J.L., Panagopoulos, C.: Physica C 387, 365 (2003)

    Article  ADS  Google Scholar 

  32. Naqib, S.H., Cooper, J.R., Tallon, J.L., Islam, R.S., Chakalov, R.A.: Phys. Rev. B 71, 054502 (2005)

  33. Naqib, S.H., Islam, R.S.: Supercond. Sci. Technol. 21, 105017 (2008)

  34. Changkang, C., Yongle, H., Hodby, J.W., Wanklyn, B.M., Narlikar, A.V., Samanta, S.B.: J. Mater. Sci. Lett. 15, 886 (1996)

    Article  Google Scholar 

  35. Babić, D., Cooper, J.R., Hodby, J.W.: Chen Changkang. Phys. Rev. B 60, 698 (1999)

    Article  ADS  Google Scholar 

  36. Naqib, S.H.: CPGS thesis University of Cambridge (unpublished) (1999)

  37. Obertelli, S.D., Cooper, J.R., Tallon, J.L.: Phys. Rev. B 46, 14928 (1992)

    Article  ADS  Google Scholar 

  38. Presland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  39. Xing, W., Heinrich, B., Chrzanowski, J., Irwin, J.C., Zhou, H., Cragg, A., Fife, A.A.: Physica C 205, 311 (1993)

    Article  ADS  Google Scholar 

  40. Atsarkin, V.A., Vasneva, G.A., Zybtsev, S.G.: Supercond. Sci. Technol. 7, 423 (1994)

    Article  ADS  Google Scholar 

  41. Daumling, M., Latbalesteir, D.C.: Phys. Rev. B 40, 9350 (1990)

    Article  ADS  Google Scholar 

  42. Hein, R.A., Francavilla, T.L., Liebenberg, D.H.: Magnetic Susceptibility of Superconductors and Other Spin systems. New York, Plenum (1991)

  43. Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962)

    Article  ADS  Google Scholar 

  44. London, H.: Phys. Lett. 6, 162 (1963)

    Article  ADS  Google Scholar 

  45. Muller, K.H.: Physica C 168, 585 (1990)

    Article  ADS  Google Scholar 

  46. Sarkar, M.R.H., Naqib, S.H.: J. Sci. Res. 4(2), 287 (2012)

    Article  Google Scholar 

  47. Naqib, S.H., Islam, R.S.:  Chin. Phys. B 24, 017402 (2015)

  48. Brandt, E.H.: Z. Phys. B 80, 167 (1990)

  49. Supple, F., Campbell, A.M., Cooper, J.R.: Physica C 242, 233 (1995)

    Article  ADS  Google Scholar 

  50. Naqib, S.H., Islam, R.S.: Sci. Rep. 9, 14856 (2019)

    Article  ADS  Google Scholar 

  51. Tallon, J.L., Williams, G.V.M., Loram, J.W.: Physica C 338, 9 (2000)

    Article  ADS  Google Scholar 

  52. Ahmad, N., Naqib S. H.: Results Phys. 17, 103054 (2020)

  53. Sun, J.Z., Scharen, M.J., Bourne, L.C., Schrieffer, J.R.: Phys. Rev. B 44, 5275 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The experimental work has been carried out in the International Research Centre in Superconductivity (IRCS) and S.H.N. thanks the IRCS, University of Cambridge, UK, for providing the facilities. S.H.N. thanks Professor J.R. Cooper for his inspirational inputs.

Funding

S.H.N. received the research grant (1151/5/52/RU/Science-07/19–20) from the Faculty of Science, University of Rajshahi, Bangladesh, which supported the theoretical part of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.R.H.S. performed the data analysis and contributed in draft writing. S.H.N. designed and supervised the project, measured the ACS, and finalized the manuscript. Both the authors reviewed the manuscript.

Corresponding author

Correspondence to S. H. Naqib.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, M.R.H., Naqib, S.H. Magnetic Field- and Frequency-Dependent Study of the AC Susceptibility of High-Tc YBCO Single Crystal. J Supercond Nov Magn 35, 1059–1070 (2022). https://doi.org/10.1007/s10948-022-06167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06167-y

Keywords

Navigation