Skip to main content
Log in

Optical and Low-Temperature Magnetocaloric Properties of HoCr0.5Mn0.5O3 Compound

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The optical, magnetic and magnetocaloric properties of HoCr0.5Mn0.5O3 compound have been investigated thoroughly. A multicolour photoluminescence emission was found with the excitation of 294 nm wavelength. The Néel transition temperature was observed around 66 K along with an anomaly ~ 12 K. From the Arrott’s plots, fitting a second-order magnetic phase transition was confirmed near 12 K. The magnetic entropy change −∆S was 8.6 J kg−1 K−1 at 12 K under 5-T magnetic field, which is higher than that reported for HoCrO3 ceramic and comparable to HoMnO3 single crystal. The relative cooling power (RCP) value was 317 J/kg. The higher ‘RCP’ along with significant −∆S and a second-order magnetic transition makes our compound a potential candidate for magnetic refrigeration in the cryogenic temperature range besides a room temperature phosphor material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gschneidner, J.K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  2. Giauque, W.F.: A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1° absolute. J. Am. Chem. Soc. 49, 1864 (1927)

  3. Giauque, W.F., MacDougall, D.P.: Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3.8H2O. Phys. Rev. 43, 768 (1933)

  4. Li, L., Wang, J., Su, K., Huo, D., Qi, Y.: Magnetic properties and magnetocaloric effect in metamagnetic RE2Cu2O5 (RE = Dy and Ho) cuprates. J. Alloys. Compd. 658, 500 (2016)

    Article  Google Scholar 

  5. Boutahar, A., Moubah, R., Hlil, E.K., Lassri, H., Lorenzo, E.: Large reversible magnetocaloric effect in antiferromagnetic Ho2O3 powders. Sci. Rep. 7, 13904 (2017)

    Article  ADS  Google Scholar 

  6. Zhang, Y., Yang, Y., Xu, X., Geng, S., Hou, L., Li, X., Ren, Z., Wilde, G.: Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite materials. Sci. Rep. 6, 34192 (2016)

    Article  ADS  Google Scholar 

  7. Panwar, N., Coondoo, I., Kumar, S., Kumar, S., Vasundhara, M., Rao, A.: Structural electrical optical and magnetic properties of SmCrO3 chromites: Influence of Gd and Mn co-doping. J. Alloys. Compd. 792, 1122 (2019)

    Article  Google Scholar 

  8. Shinde, K.P., Tien, V.M., Huang, L., Park, H.R., Yu, S.C., Chung, K.C., Kim, D.H.: Magnetocaloric effect in Tb2O3 and Dy2O3 nanoparticles at cryogenic temperatures. J. Appl. Phys. 127, 054903 (2020)

  9. Pecharsky, V.K., Gschneidner, K.: Magnetocaloric effect from indirect measurements: magnetization and heat capacity. J. Appl. Phys. 86, 565 (1999)

    Article  ADS  Google Scholar 

  10. Kumar, S., Coondoo, I., Vasundhara, M., Kumar, S., Kholkin, A.L., Panwar, N.: Structural magnetic magnetocaloric and specific heat investigations on Mn doped PrCrO3 orthochromites. J. Phys. Condens. Matter. 29, 195802 (2017)

  11. Numazawa, T., Kamiya, K., Utaki, T., Matsumoto, K.: Magnetic refrigerator for hydrogen liquefaction. Cryogenics. 62, 185 (2014)

    Article  ADS  Google Scholar 

  12. Jeong, S.: AMR (Active Magnetic Regenerative) refrigeration for low temperature. Cryogenics. 62, 193 (2014)

    Article  ADS  Google Scholar 

  13. Fujita, A., Fujieda, S., Fukamichi, S.K., Mutamira, H., Got, T.: Itinerant-electron metamagnetic transition and large magnetovolume effects in La(FexSi1−x)13 compounds. Phys. Rev. B. 65, 014410 (2001)

  14. Balli, M., Rosca, M., Fruchart, D., Ginoux, D.: Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound. J. Magn. Magn. Mater. 321, 123 (2009)

  15. Gschneidner, K.A., Pecharsky, V.K.: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  ADS  Google Scholar 

  16. Boutahar, A., Ettayfi, A., Alouhmy, G., Lassri, H., Hlil, E.K., Fruchart, D.: The influence of vanadium on magnetism and magnetocaloric properties of Fe80−xVxB12Si8 (x= 8 10 and 13.7) amorphous alloys. J. Suprcond. Novel. Magn. 27, 2401 (2014)

  17. Plaza, E.J.R., De Sousa, V.S.R., Reis, M.S., Ranke, P.J.V.: A comparative study of the magnetocaloric effect in RNi2 (R=Dy, Ho, Er) intermetallic compounds. J. Alloys. Compd. 505, 357 (2010)

    Article  Google Scholar 

  18. Yin, S., Sharma, V., McDannald, A., Reboredo, F.A., Jain, M.: Magnetic and magnetocaloric properties of iron substituted holmium chromite and dysprosium chromite. RSC. Adv. 6, 9475 (2016)

    Article  ADS  Google Scholar 

  19. Yin, S., Zhong, W., Guild, C. J., Shi, J., Suib, S.L., Cótica, L.F., Jain, M.: Effect of Gd substitution on the structural, magnetic, and magnetocaloric properties of HoCrO3. J.Appl. Phys. 123, 053904 (2018)

  20. Kotnana, G., Sahu, D.P., Jammalamadaka, S.N.: Inverse and enhanced magnetocaloric properties of HoCrO3. J. Alloys. Compd. 709, 410 (2017)

    Article  Google Scholar 

  21. Kanwar, K., Coondoo, I., Anas, M., Malik, V.K., Kumar, P., Kumar, S., Kulriya, P.K., Kaushik, S.D., Panwar, N.: A comparative study of the structural, optical, magnetic and magnetocaloric properties of HoCrO3 and HoCr0.85Mn0.15O3 orthochromites. Ceram. Int. 47, 7386 (2021)

  22. Balli, M., Roberge, B., Vermette, J., Jandl, S., Fournier, P., Gospodinov, M.M.: Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited. Phys. B. 478, 77 (2015)

    Article  ADS  Google Scholar 

  23. Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. Condens. Matter. 192, 55 (1993)

    Article  ADS  Google Scholar 

  24. Zhao, Y., Weidner, D.J., Parise, J.B., Cox, D.E.: Thermal expansion and structural distortion of perovskite data for NaMgF3 perovskite Part I. Phys. Earth. Planet. Inter. 76, 1 (1993)

    Article  ADS  Google Scholar 

  25. O’Keeffe, M., Hyde, B.G.: Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12). Acta. Cryst. 33, 3802 (1977)

    Article  Google Scholar 

  26. Muñoz, A., Casáis, M.T., Alonso, J.A., Martínez-Lope, M.J., Martínez, J.L., Fernández-Dıaz, M.T.: Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg. Chem. 40, 1020 (2001)

    Article  Google Scholar 

  27. Liu, P., Wang, X.L., Cheng, Z.X., Du, Y., Kimura, H.: Structural dielectric antiferromagnetic and thermal properties of the frustrated hexagonal Ho1-xErxMnO3 manganites. Phy. Rev. B. 83, 144404 (2011)

  28. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. 32, 751 (1976)

    Article  Google Scholar 

  29. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272 (2011)

    Article  Google Scholar 

  30. Mahana, S., Pandey, S.K., Rakshit, B., Nandi, P., Basu, R., Dhara, S., Turchini, S., Zema, N., Manju, U., Mahanti, S.D., Topwal, D.: Site substitution in GdMnO3: Effects on structural electronic and magnetic properties. Phys. Rev. B. 102, 245120 (2020)

  31. Chiang, F.K., Chu, M.W., Chou, F.C., Jeng, H.T., Sheu, H.S., Chen, F.R., Chen, C.H.: Effect of Jahn-Teller distortion on magnetic ordering in Dy(Fe,Mn)O3 perovskites. Phys. Rev. B. 83, 245105 (2011)

  32. Weber, M.C., Kreisel, J., Thomas, P.A., Newton, M., Sardar, K., Walton, R.I.: Phonon Raman scattering of RCrO3 perovskites ( R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu ). Phys. Rev. B. 85, 054303 (2012)

  33. Modi, A., Bhat, M.A., Pandey, D.K., Gaur, N.K.: Strengthened ferroelectric response in hexagonal Ho1-xGdxMnO3 (0 ≤ x ≤ 0.1) compounds. Mater. Lett. 276, 128212 (2020)

  34. Yin, S., Jain, M.: Enhancement in magnetocaloric properties of holmium chromite by gadolinium substitution. J. Appl. Phys. 120, 043906 (2016)

  35. Rao, G.V.S., Rao, C.N.R., Ferraro, J.R.: Infrared and electronic spectra of rare earth perovskites: ortho-chromites -manganites and –ferrites. Appl. Spectrosc. 24, 436 (1970)

    Article  ADS  Google Scholar 

  36. Perrotta, A.J., Mccallum, I.S.: Germanate spinels. J. Am. Ceram. Soc. 46, 408 (1963)

    Article  Google Scholar 

  37. Kanwal, M., Yadav, R.S., Bahadur, A., Rai, S.B.: Near-infrared light excited highly pure green upconversion photoluminescence and intrinsic optical bistability sensing in a Ho3+/Yb3+ Co-doped ZnGa2O4 phosphor through Li+ doping. J. Phys. Chem. C. 124, 10117 (2020)

    Google Scholar 

  38. Jain, N., Singh, R.K., Singh, B.P., Srivastava, A., Singh, R.A., Singh, J.: Enhanced temperature-sensing behavior of Ho3+−Yb3+-Codoped CaTiO3 and its hybrid formation with Fe3O4 nanoparticles for hyperthermia. ACS Omega 4, 7482 (2019)

    Article  Google Scholar 

  39. Youssef, R.T.B., Sdiria, N., Valentec, M.A., Horchani-Naifera, K., Férida, M.: Physical properties of Nano Crystalline Ceramic Ho1-xBaxCrO3. Ceram. Int. 45, 20211 (2019)

    Article  Google Scholar 

  40. Jiang, T., Tian, Y., Xing, M., Fu, Y., Yin, X., Wang, H., Feng, X., Luo, X.: Research on the photoluminescence and up-conversion luminescence properties of Y2Mo4O15: Yb Ho under 454 and 980 nm excitation. Mater. Res. Bull. 98, 328 (2018)

    Article  Google Scholar 

  41. Kumar, S., Coondoo, I., Vasundhara, M., Patra, A.K., Kholkin, A.L., Panwar, N.: Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites. J. Appl. Phys. 121, 043907 (2017)

  42. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  43. Midya, A., Mandal, P., Das, S., Banerjee, S., Chandra, L.S.S., Ganesan, V., Barman, S.R.: Magnetocaloric effect in HoMnO3 crystal. Appl. Phys. Lett. 96, 142514 (2010)

  44. Landau, L.D., Lifshitz, E.M.: Statistical physics. Pergamon, New York (1958)

    MATH  Google Scholar 

  45. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  46. Ezaami, A., Nasser, N.O., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A. Hlil, E.K.: Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process. J. Mater. Sci. Mater. Electron. 28, 3648 (2017)

Download references

Acknowledgements

The authors are grateful to the Materials Research Centre, MNIT Jaipur (India) for the use of Raman and FTIR facility. The authors thank Mr. Ankur Shandilya for the photoluminescence measurement at the University Science Instrumentation Center (USIC), University of Delhi, Delhi (India).

Funding

Dr. Neeraj Panwar would like to thank DST SERB, New Delhi, UGC DAE CSR Mumbai and IUAC New Delhi for the grants through Projects ECR/2017/002681, CRS-M-298 and UFR-62317, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Panwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, K., Vasundhara, M., Kumar, S. et al. Optical and Low-Temperature Magnetocaloric Properties of HoCr0.5Mn0.5O3 Compound. J Supercond Nov Magn 35, 625–633 (2022). https://doi.org/10.1007/s10948-021-06106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06106-3

Keywords

Navigation