Skip to main content

Advertisement

Log in

Preparation of CoFe2O4/CoFe Particles with Broadband Microwave Absorption by Hydrogen Reduction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, CoFe2O4/CoFe particles were prepared by two steps methods of ethylene glycol solvothermal and hydrogen reduction. The structure and morphology of the samples were characterized by X-ray diffraction and field-emission scanning electron microscopy. The samples were mixed with paraffin wax at a mass ratio of 3:1 to prepare rings with an inner diameter of 3.04 mm and an outer of 7 mm, and its electromagnetic parameters were measured by a network vector analyzer. The results show that the dielectric loss and magnetic loss of the composites can be improved after high temperature hydrogen reduction. The optimal reflection loss of −52.14 dB can be achieved at 12.34 GHz in a thickness of only 1.7 mm, when CoFe2O4 was annealed at 500°C for three hours, and the obtained particles can reach less than −20 dB in all C, X, and Ku bands. In all the samples annealing under 500–700°C, the maximum absorption bandwidth over 5.0 GHz can be observed. By comparing the impedance matching properties of CoFe2O4 precursor and CoFe2O4/CoFe composites, it is found that the tunability of the electromagnetic property in composite structure contributes to the excellent electromagnetic wave absorbing performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun, D., Zou, Q., Wang, Y., Wang, Y., Jiang, W., Li, F.: Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale. 6(12), 6557–6562 (2014). https://doi.org/10.1039/c3nr06797a

    Article  ADS  Google Scholar 

  2. Sun, X., He, J., Li, G., Tang, J., Wang, T., Guo, Y., Xue, H.: Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 1(4), 765–777 (2013). https://doi.org/10.1039/c2tc00159d

    Article  Google Scholar 

  3. Zhao, H., Hou, L., Bi, S., Lu, Y.: Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings. ACS Appl. Mater. Interfaces. 9(38), 33059–33070 (2017). https://doi.org/10.1021/acsami.7b07941

    Article  Google Scholar 

  4. Narang, S.B., Pubby, K.: Electromagnetic characterization of Co-Ti-Doped Ba-M ferrite-based frequency-tunable microwave absorber in 12.4–40 GHz. J. Supercond. Nov. Magn. 30(2), 511–520 (2016). https://doi.org/10.1007/s10948-016-3789-3

    Article  Google Scholar 

  5. He, P., Hou, Z.-L., Zhang, K.-L., Li, J., Yin, K., Feng, S., Bi, S.: Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52(13), 8258–8267 (2017). https://doi.org/10.1007/s10853-017-1041-6

    Article  ADS  Google Scholar 

  6. Zeng, Q., Chen, P., Yu, Q., Chu, H.R., Xiong, X.H., Xu, D.W., Wang, Q.: Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties. Sci. Rep. 7(1), 8388 (2017). https://doi.org/10.1038/s41598-017-08293-3

    Article  ADS  Google Scholar 

  7. Li, X., Han, X., Tan, Y., Xu, P.: Preparation and microwave absorption properties of Ni–B alloy-coated Fe3O4 particles. J. Alloys Compd. 464(1-2), 352–356 (2008). https://doi.org/10.1016/j.jallcom.2007.09.123

    Article  Google Scholar 

  8. Yan, S.J., Xu, C.Y., Jiang, J.T., Liu, D.B., Wang, Z.Y., Tang, J., Zhen, L.: Strong dual-frequency electromagnetic absorption in Ku-band of C@FeNi3 core/shell structured microchains with negative permeability. J. Magn. Magn. Mater. 349, 159–164 (2014). https://doi.org/10.1016/j.jmmm.2013.08.027

    Article  ADS  Google Scholar 

  9. Dong, A., Zhiyi, Z., Yanhui, W., Shuaishuai, C., Yaqing, L.: The distinctly enhanced electromagnetic wave absorption properties of FeNi/rGO nanocomposites compared with pure FeNi alloys. J. Supercond. Nov. Magn. 32(2), 385–392 (2018). https://doi.org/10.1007/s10948-018-4681-0

    Article  Google Scholar 

  10. Zhang, C., Jiang, J., Bie, S., Zhang, L., Miao, L., Xu, X.: Electromagnetic and microwave absorption properties of surface modified Fe–Si–Al flakes with nylon. J. Alloys Compd. 527, 71–75 (2012). https://doi.org/10.1016/j.jallcom.2012.03.009

    Article  Google Scholar 

  11. Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q., Sun, X.: One-pot hydrothermal synthesis of RGO/CoFe 2 O 4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52–55 (2014). https://doi.org/10.1016/j.matlet.2013.09.113

    Article  Google Scholar 

  12. Liu, P., Yao, Z., Zhou, J., Yang, Z., Kong, L.B.: Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4(41), 9738–9749 (2016). https://doi.org/10.1039/c6tc03518c

    Article  Google Scholar 

  13. Sui, M., Sun, X., Lou, H., Li, X., Lv, X., Li, L., Gu, G.: Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time. J. Mater. Sci. Mater. Electron. 29(9), 7539–7550 (2018)

    Article  Google Scholar 

  14. Liu, P., Huang, Y., Zhang, X.: Cubic NiFe2O4 particles on graphene–polyaniline and their enhanced microwave absorption properties. Compos. Sci. Technol. 107, 54–60 (2015). https://doi.org/10.1016/j.compscitech.2014.11.021

    Article  Google Scholar 

  15. Lu, Y., Wang, Y., Li, H., Lin, Y., Jiang, Z., Xie, Z., Kuang, Q., Zheng, L.: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177

    Article  Google Scholar 

  16. Li, W., Wang, L., Li, G., Xu, Y.: Hollow CoFe2O4–Co3Fe7 microspheres applied in electromagnetic absorption. J. Magn. Magn. Mater. 377, 259–266 (2015). https://doi.org/10.1016/j.jmmm.2014.10.118

    Article  ADS  Google Scholar 

  17. Jin, C., He, Z., Zhao, Y., Pan, Y., Wu, W., Wang, X., Tong, G.: Controllable synthesis, formation mechanism, and enhanced microwave absorption of dendritic AgFe alloy/Fe3O4 nanocomposites. CrystEngComm. 20(14), 1997–2009 (2018). https://doi.org/10.1039/c7ce02223a

    Article  Google Scholar 

  18. Gong, Y.-X., Zhen, L., Jiang, J.-T., Xu, C.-Y., Wang, W.-S., Shao, W.-Z.: Synthesis of Fe–ferrite composite nanotubes with excellent microwave absorption performance. CrystEngComm. 13(22), 6839 (2011). https://doi.org/10.1039/c1ce05397c

    Article  Google Scholar 

  19. Guan, Z.J., Jiang, J.T., Chen, N., Gong, Y.X., Zhen, L.: Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties. Nanotechnology. 29(30), 305604 (2018). https://doi.org/10.1088/1361-6528/aac31f

    Article  Google Scholar 

  20. Golchinvafa, S., Masoudpanah, S.M.: Magnetic and microwave absorption properties of FeNi3/NiFe2O4 composites synthesized by solution combustion method. J. Alloys Compd. 787, 390–396 (2019). https://doi.org/10.1016/j.jallcom.2019.02.039

    Article  Google Scholar 

  21. Zare, Y., Shams, M.H., Jazirehpour, M.: Tuning microwave permittivity coefficients for enhancing electromagnetic wave absorption properties of FeCo alloy particles by means of sodium stearate surfactant. J. Alloys Compd. 717, 294–302 (2017). https://doi.org/10.1016/j.jallcom.2017.05.043

    Article  Google Scholar 

  22. Li, X., Qu, X., Xu, Z., Dong, W., Wang, F., Guo, W., Wang, H., Du, Y.: Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces. 11(21), 19267–19276 (2019). https://doi.org/10.1021/acsami.9b01783

    Article  Google Scholar 

  23. Lv, H., Zhang, H., Ji, G., Xu, Z.J.: Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces. 8(10), 6529–6538 (2016). https://doi.org/10.1021/acsami.5b12662

    Article  Google Scholar 

  24. Sundar, R.S., Deevi, S.C.: Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev. 50(3), 157–192(2005) (2005). https://doi.org/10.1179/174328005X14339

    Article  Google Scholar 

  25. Shang, T., Lu, Q., Chao, L., Qin, Y., Yun, Y., Yun, G.: Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4. Appl. Surf. Sci. 434, 234–242 (2018). https://doi.org/10.1016/j.apsusc.2017.10.175

    Article  ADS  Google Scholar 

  26. Wang, P., Zhang, J., Wang, G., Duan, B., He, D., Wang, T., Li, F.: Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences. J. Mater. Sci. Technol. 35(9), 1931–1939 (2019). https://doi.org/10.1016/j.jmst.2019.05.021

    Article  Google Scholar 

  27. Wen, S., Liu, Y., Zhao, X., Cheng, J., Li, H.: Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties. Powder Technol. 264, 128–132 (2014). https://doi.org/10.1016/j.powtec.2014.05.030

    Article  Google Scholar 

  28. Li, H., Bao, S., Li, Y., Huang, Y., Chen, J., Zhao, H., Jiang, Z., Kuang, Q., Xie, Z.: Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures. ACS Appl. Mater. Interfaces. 10(34), 28839–28849 (2018). https://doi.org/10.1021/acsami.8b08040

    Article  Google Scholar 

  29. Zhang, J., Su, Y., Zhang, H., Wang, L., Yu, Q.: Bi-phase metallic cobalt with efficient broadband absorption in X and Ku bands. J. Mater. Sci. Mater. Electron. 30(19), 18268–18279 (2019). https://doi.org/10.1007/s10854-019-02181-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchang Su.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Su, Y., Zhang, J. et al. Preparation of CoFe2O4/CoFe Particles with Broadband Microwave Absorption by Hydrogen Reduction. J Supercond Nov Magn 34, 2217–2225 (2021). https://doi.org/10.1007/s10948-021-05876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05876-0

Keywords

Navigation