Skip to main content
Log in

Regulation of Microstructure, Static, and Microwave Magnetic Performance of NiFe/FeMn/NiFe Heterogeneous Multilayer Films Based on Thickness of FeMn Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ferromagnetic (FM)/antiferromagnetic (AFM) heterogeneous multilayer films have triggered tremendous interests for application in microwave/mm devices and components. However, with the development trend of miniaturization, high frequency, and lightweight of devices, the FM/AFM heterogeneous multilayers are desired to possess high saturation magnetization (4πMs), low coercivity (Hc), and low ferromagnetic resonance (FMR) linewidth (∆H). Herein, the Ni81Fe19 (50 nm)/Fe50Mn50 (t nm)/Ni81Fe19 (50 nm) films were fabricated by DC magnetron sputtering, and the effects of thickness of the Fe50Mn50 on the microstructure, static, and microwave properties were investigated in detail. With increasing the FeMn film thickness, the saturation magnetization firstly increased and then decreased from 7947 to 9448 Gs. The in-plane coercivity firstly decreased and then increased from 28.58 to 0.6115 Oe, and the out-of-plane exchange bias field undergoes a transition from a negative exchange bias to a positive exchange bias. Besides, the ferromagnetic resonance linewidth firstly decreased and then increased from 142 to 87 Oe. Remarkably, with a 15-nm Fe50Mn50 film, the heterogeneous multilayer films achieved optimum performance with high saturation magnetization (9448 Gs), low coercivity (1.02 Oe), and low FMR linewidth (94 Oe). The outstanding Ni81Fe19/Fe50Mn50/Ni81Fe19 heterogeneous multilayer films exhibit great potentials in radar remote sensing, communication, and electronic countermeasure fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elayakumar, K., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Kumar, R., Jaganathan, S., Baykal, A.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    Article  ADS  Google Scholar 

  2. Manikandan, A., Durka, M., Antony, S.A.: Magnetically recyclable spinel MnxZn1–x Fe2O4 (0.0≤x≤0.5) nano-photocatalysts. Adv. Sci. Eng. Med. 7(1), 33–46 (2015)

    Article  Google Scholar 

  3. Baykal, A., Guner, S., Gungunes, H., Batoo, K.M., Amir, M., Manikandan, A.: Magneto optical properties and hyperfine interactions of Cr3+ ion substituted copper ferrite nanoparticles. J. Inorg. Organomet. Polym. Mater. 28(6), 2533–2544 (2018)

    Article  Google Scholar 

  4. Manikandan, A., Vijaya, J.J., Kennedy, L.J.: Comparative study of pure and Ni-doped ZnFe2O4 nanoparticles for structural, optical and magnetic properties. Adv. Mater. Res. 699, 524–529 (2013)

    Article  Google Scholar 

  5. Oogane, M., Wakitani, T., Yakata, S., Yilgin, R., Ando, Y., Sakuma, A., Miyazaki, T.: Magnetic damping in ferromagnetic thin films. Jpn. J. Appl. Phys. 45(5R), 3889 (2006)

    Article  ADS  Google Scholar 

  6. Yu, Y., Zhan, Q.F., Wei, J.W., Wang, J.B., Dai, G.H., Zuo, Z.H., Zhang, X.S., Liu, Y.W., Yang, H.L., Xie, S.H., Wang, B.M., Li, R.W.: Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl. Phys. Lett. 106(16), 162405 (2015)

    Article  ADS  Google Scholar 

  7. Cao, D.R., Wang, Z.K., Feng, E.X., Wei, J.W., Wang, J.B., Liu, Q.F.: Magnetic properties and microstructure investigation of electrodeposited FeNi/ITO films with different thickness. J. Alloys Compd. 581, 66–70 (2013)

    Article  Google Scholar 

  8. Lu, L., Young, J., Wu, M.Z., Mathieu, C., Hadley, M., Krivosik, P., Mo, N.: Tuning of magnetization relaxation in ferromagnetic thin films through seed layers. Appl. Phys. Lett. 100(2), 022403 (2012)

    Article  ADS  Google Scholar 

  9. Chen, H., Fan, X.L., Wang, W.X., Zhou, H.A., Gui, Y.S., Hu, C.M., Xue, D.S.: Electric detection of the thickness dependent damping in Co90Zr10 thin films. Appl. Phys. Lett. 102(20), 202410 (2013)

    Article  ADS  Google Scholar 

  10. Luo, C., Feng, Z., Fu, Y., Zhang, W., Wong, P.K.J., Kou, Z.X., Zhai, Y., Ding, H.F., Farle, M., Du, J., Zhai, H.R.: Enhancement of magnetization damping coefficient of permalloy thin films with dilute Nd dopants. Phys. Rev. B. 89(18), 184412 (2014)

    Article  ADS  Google Scholar 

  11. Dubs, C., Surzhenko, O., Linke, R., Danilewsky, A., Brückner, U., Dellith, J.: Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses. J. Phys. D. Appl. Phys. 50(20), 204005 (2017)

    Article  ADS  Google Scholar 

  12. Li, S.Z., Zhang, W., Ding, J.J., Pearson, J.E., Novosad, V., Hoffmann, A.: Epitaxial patterning of nanometer-thick Y3Fe5O12 films with low magnetic damping. Nanoscale. 8(1), 388–394 (2016)

    Article  ADS  Google Scholar 

  13. Stognij, A.I., Lutsev, L.V., Bursian, V.E., Novitskii, N.N.: Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates. J. Appl. Phys. 118(2), 023905 (2015)

    Article  ADS  Google Scholar 

  14. Wang, C.T., Liang, X.F., Zhang, Y., Liang, X., Zhu, Y.P., Qin, J., Gao, Y., Peng, B., Sun, N.X., Bi, L.: Controlling the magnetic anisotropy in epitaxial Y3Fe5O12 films by manganese doping. Phys. Rev. B. 96(22), 224403 (2017)

    Article  ADS  Google Scholar 

  15. Lucas, I., Jiménez-Cavero, P., Vila-Fungueiriño, J.M., Magén, C., Sangiao, S., de Teresa, J.M., Morellón, L., Rivadulla, F.: Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet. Phys. Rev. Mater. 1(7), 074407 (2017)

    Article  Google Scholar 

  16. Sokolov, N.S., Fedorov, V.V., Korovin, A.M., Suturin, S.M., Baranov, D.A., Gastev, S.V., Krichevtsov, B.B., Maksimova, K.Y., Grunin, A.I., Bursian, V.E., Lutsev, L.V., Tabuchi, M.: Thin yttrium iron garnet films grown by pulsed laser deposition: crystal structure, static, and dynamic magnetic properties. J. Appl. Phys. 119(2), 023903 (2016)

    Article  ADS  Google Scholar 

  17. Yang, G.M., Wu, J., Lou, J., Liu, M., Sun, N.X.: Low-loss magnetically tunable bandpass filters with YIG films. IEEE Trans. Magn. 49(9), 5063–5068 (2013)

    Article  ADS  Google Scholar 

  18. Zhang, R., Liu, M., Lu, L., Mi, S.B., Wang, H.: Ultra-low temperature epitaxial growth of lithium ferrite thin films by high-pressure sputtering. CrystEngComm. 17(43), 8256–8263 (2015)

    Article  Google Scholar 

  19. Xu, J.W., Sluka, V., Kardasz, B., Pinarbasi, M., Kent, A.D.: Ferromagnetic resonance linewidth in coupled layers with easy-plane and perpendicular magnetic anisotropies. J. Appl. Phys. 124(6), 063902 (2018)

    Article  ADS  Google Scholar 

  20. Lee, A.J., Brangham, J.T., Cheng, Y., White, S.P., Ruane, W.T., Esser, B.D., McComb, D.W., Hammel, P.C., Yang, F.: Metallic ferromagnetic films with magnetic damping under 1.4× 10−3. Nat. Commun. 8(1), 234 (2017)

    Article  ADS  Google Scholar 

  21. Devolder, T.: Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers. J. Appl. Phys. 119(15), 153905 (2016)

    Article  ADS  Google Scholar 

  22. Aranda, G.R., Kakazei, G.N., González, J., Guslienko, K.Y.: Ferromagnetic resonance micromagnetic studies in patterned permalloy thin films and stripes. J. Appl. Phys. 116(9), 093908 (2014)

    Article  ADS  Google Scholar 

  23. Gritsenko, C., Dzhun, I., Chechenin, N., Babaytsev, G., Rodionova, V.: Dependence of the exchange bias on the thickness of antiferromagnetic layer in the trilayered NiFe/IrMn/NiFe thin-films. Phys. Procedia. 75, 1066–1071 (2015)

    Article  ADS  Google Scholar 

  24. Gritsenko, C., Dzhun, I., Babaytsev, G., Chechenin, N., Rodionova, V.: Exchange bias and coercivity fields as a function of the antiferromagnetic layer thickness in bi-and tri-layered thin-films based on IrMn and NiFe. Phys. Procedia. 82, 51–55 (2016)

    Article  ADS  Google Scholar 

  25. Zhao, Z.D., Li, M.H., Kang, P., Zhao, C.J., Zhang, J.Y., Zhou, L.J., Zhao, Y.C., Jiang, S.L., Yu, G.H.: The influence of ultrathin cu interlayer in NiFe/IrMn interface on rotation of the magnetic moments. Appl. Surf. Sci. 332, 710–715 (2015)

    Article  ADS  Google Scholar 

  26. Li, S., Li, Q., Xu, J., Yan, S., Miao, G.X., Kang, S., Dai, Y., Jiao, J., Lü, Y.: Tunable optical mode ferromagnetic resonance in FeCoB/Ru/FeCoB synthetic antiferromagnetic trilayers under uniaxial magnetic anisotropy. Adv. Funct. Mater. 26(21), 3738–3744 (2016)

    Article  Google Scholar 

  27. Chen, Y., Fan, X., Zhou, Y., Xie, Y., Wu, J., Wang, T., Chui, S., Xiao, J.Q.: Designing and tuning magnetic resonance with exchange interaction. Adv. Mater. 27(8), 1351–1355 (2015)

    Article  Google Scholar 

  28. Xu, F., Liao, Z., Huang, Q., Phuoc, N.N., Ong, C.K., Li, S.: Influence of thickness on magnetic properties and microwave characteristics of NiFe/IrMn/NiFe trilayers. IEEE Trans. Magn. 47(10), 3486–3489 (2011)

    Article  ADS  Google Scholar 

  29. Belmeguenai, M., Martin, T., Woltersdorf, G., Bayreuther, G., Baltz, V., Suszka, A.K., Hickey, B.J.: Microwave spectroscopy with vector network analyzer for interlayer exchange-coupled symmetrical and asymmetrical NiFe/Ru/NiFe. J. Phys. Condens. Matter. 20(34), 345206 (2008)

    Article  Google Scholar 

  30. Acher, O., Queste, S., Barholz, K.U., Mattheis, R.: High-frequency permeability of thin NiFe/IrMn layers. J. Appl. Phys. 93(10), 6668–6670 (2003)

    Article  ADS  Google Scholar 

  31. Phuoc, N.N., Lim, S.L., Xu, F., Ma, Y.G., Ong, C.K.: Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays. J. Appl. Phys. 104(9), 093708 (2008)

    Article  ADS  Google Scholar 

  32. Rementer, C.R., Fitzell, K., Xu, Q., Nordeen, P., Carman, G.P., Wang, Y.E., Chang, J.P.: Tuning static and dynamic properties of FeGa/NiFe heterostructures. Appl. Phys. Lett. 110(24), 242403 (2017)

    Article  ADS  Google Scholar 

  33. Mary, J.A., Manikandan, A., Kennedy, L.J., Bououdina, M., Sundaram, R., Vijaya, J.J.: Structure and magnetic properties of Cu-Ni alloy nanoparticles prepared by rapid microwave combustion method. Trans. Nonferrous Metals Soc. China. 24(5), 1467–1473 (2014)

    Article  Google Scholar 

  34. Dong, B.Z., Fang, G.J., Wang, J.F., Guan, W.J., Zhao, X.Z.: Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition. J. Appl. Phys. 101(3), 033713 (2007)

    Article  ADS  Google Scholar 

  35. Arias, R., Mills, D.L.: Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B. 60, 7395 (1999)

    Article  ADS  Google Scholar 

  36. Yuan, S.J., Kang, B.J., Yu, L.M., Cao, S.X., Zhao, X.L.: Increased ferromagnetic resonance linewidth and exchange anisotropy in NiFe/FeMn bilayers. J. Appl. Phys. 105, 063902 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China under Grant No. 51472045and 51772046 and Sichuan Science and Technology Program under Grant No. 2020YFG0107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lan, Z., Yu, Z. et al. Regulation of Microstructure, Static, and Microwave Magnetic Performance of NiFe/FeMn/NiFe Heterogeneous Multilayer Films Based on Thickness of FeMn Films. J Supercond Nov Magn 34, 531–538 (2021). https://doi.org/10.1007/s10948-020-05712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05712-x

Keywords

Navigation