Skip to main content
Log in

Structural and Magnetic Properties of Copper-Substituted Nickel–Zinc Nanoparticles Prepared by Sol-Gel Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Soft ferrite materials of high magnetic permeability and lower losses, essential to multilayer chip inductor applications, require stringent processing conditions to enable the materials with the desired characteristics. Copper-substituted Ni–Zn nanoferrite was processed through the sol-gel technique using polyvinyl alcohol as a chelating agent to control the particle size. The structural parameters and magnetic properties were examined by X-ray diffraction, field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy and vibrating-sample magnetometer techniques respectively. FESEM images showed the formation of anisotropic structures like nanorods, nanoflower bouquet and nanofibres with copper substitution. The occupancy of copper ions towards octahedral sites has been ascertained by DC resistivity measurements, whereas the magnetic properties have been discussed based on cation distribution. The observed high values of magnetic permeability and DC resistivity suggest that the Ni–Zn ferrite system yields useful electromagnetic properties for smaller concentrations of copper substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kumar, A.M., Varma, M.C., Choudary, G.S.V.R.K., Prameela, P., Rao, K.H.: Influence of gadolinium on magnetization and DC resistivity of Ni–Zn nanoferrites. J. Magn. Magn. Mater. 324, 68–71 (2012)

    ADS  Google Scholar 

  2. Mahesh Kumar, A., Chaitanya Varma, M., Dube, C.L., Rao, K.H., Kashyap, S.C.: Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J. Magn. Magn. Mater. 320, 1995–2000 (2008)

    ADS  Google Scholar 

  3. Mahesh Kumara, A., Srinivasa Rao, K., Chaitanya Varma, M., Rao, K.H.: Investigations of surface spin canting in Ni-Zn nanoferrite and its development as magnetic core for microwave applications. J.Magn.Magn.Mater. 471, 262–268 (2019)

    Google Scholar 

  4. Rosales, M.I., Amano, E., Cuautle, M.P., Valenzuela, R.: Mater.: Impedance spectroscopy studies of Ni-Zn ferrites. Sci. Eng. B. 49, 221–226 (1997)

    Google Scholar 

  5. Zahi, S., Daud, A.R., Hashim, M.: A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106, 452–456 (2007)

    Google Scholar 

  6. Albuquerque, A.S., Ardisson, J.D., Macedo, W.A.A., Alves, M.C.M.: Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism. J. Appl. Phys. 87, 4352–4357 (2000)

    ADS  Google Scholar 

  7. Penchal Reddy, M., Madhuri, W., Ramamanohar Reddy, N., Siva Kumar, K.V., Murthy, V.R.K., Ramakrishna Reddy, R.: Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng. C. 30, 1094–1099 (2010)

    Google Scholar 

  8. Rahimi, M., Kameli, P., Ranjbar, M., Hajihashemi, H., Salamati, H.: The effect of zinc doping on the structural and magnetic properties of Ni1−x Zn x Fe2O4. J. Mater. Sci. 48, 2969–2976 (2013)

    ADS  Google Scholar 

  9. Ramana, P.V., Srinivasa Rao, K., Rao, K.H.: Influence of iron content on the structural and magnetic properties of Ni-Zn ferrite nanoparticles synthesized by PEG assisted sol-gel method. J. Magn. Magn. Mater. 465, 747–755 (2018)

    ADS  Google Scholar 

  10. Mondal, R., Dey, S., Majumder, S., Poddar, A., Dasgupta, P., Kumar, S.: Study on magnetic and hyperfine properties of mechanically milled Ni0.4Zn0.6Fe2O4 nanoparticles. J. Magn. Magn. Mater. 448, 135–145 (2018)

    ADS  Google Scholar 

  11. Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)

    ADS  Google Scholar 

  12. Sangeeta, T., Katyal, S.C., Singh, M.: Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1–7 (2009)

    ADS  Google Scholar 

  13. Li, X., Wang, G.: Low-temperature synthesis and growth of superparamagnetic Zn0.5Ni0.5Fe2O4 nanosized particles. J. Magn. Magn. Mater. 321, 1276–1279 (2009)

    ADS  Google Scholar 

  14. Jadhav, J., Biswas, S., Yadav, A.K., Jha, S.N., Bhattacharyya, D.: Structural and magnetic properties of nanocrystalline Ni-Zn ferrites:in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017)

    Google Scholar 

  15. Atif, M., Nadeem, M., Grossinger, R., Sato Turtelli, R.: Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509, 5720–5724 (2011)

    Google Scholar 

  16. Srinivasa Rao, K., RangaNayakulu, S.V., Chaitanya Varma, M., Choudary, G.S.V.R.K., Rao, K.H.: Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. J. Magn. Magn. Mater. 451, 602–608 (2018)

    ADS  Google Scholar 

  17. Shirsath, S.E., Wang, D., Jadhav, S.S., Mane, M.L., Li, S.: (2018) Ferrites obtained by sol-gel method. In: Klein, L., Aparicio, M., Jitianu, A. (eds.) Hand Book of sol-Gel Science and Technology, pp. 695–735. Springer, Cham (2018)

    Google Scholar 

  18. Siva, M., Kumar, S.K., Chinnaraj, K., Babu, R.S., Nithiyanantham, S.: Synthesis, characterization and effects of citric acid and PVA on magnetic properties of CoFe2O4. J. Inorg. Organomet. Polym. Mater. 23, 439–445 (2013)

    Google Scholar 

  19. Frajer, G., Salaün, M., Delette, G., Chazal, H., Isnard, O.: Study of magnetic properties of NiZnCu ferrite synthesized by Pechini method and solid-state reactions. AIP Adv. 8, 047801 (2018)

    ADS  Google Scholar 

  20. Xiang, J., Shen, X., Song, F., Liu, M.: One-dimensional NiCuZn ferrite nanostructures: fabrication, structure, and magnetic properties. J. Solid State Chem. 183, 1239–1244 (2010)

    ADS  Google Scholar 

  21. Hsu, W.C., Chen, S.C., Kuo, P.C., Lie, C.T., Tsai, W.S.: Preparation of NiCuZn ferrite nanoparticles from chemical co-precipitation method and the magnetic properties after sintering. Mater. Sci. Eng. B. 111, 142–149 (2004)

    Google Scholar 

  22. Rahman, I.Z., Ahmed, T.T.: A study on Cu substituted chemically processed Ni-Zn-Cu ferrites. J. Magn. Magn. Mater. 290-291, 1576–1579 (2005)

    ADS  Google Scholar 

  23. Li, B., Yue, Z.X., Qi, X.W., Zhou, J., Gui, Z.L., Li, L.T.: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 99, 252–254 (2003)

    Google Scholar 

  24. Krishnaveni, T., Kanth, B.R., Raju, V.S.R., Murthy, S.R.: Fabrication of multilayer chip inductors using Ni–Cu–Zn ferrites. J. Alloys Compd. 414, 282–286 (2006)

    Google Scholar 

  25. Su, H., Zhang, H., Tang, X., Jing, Y.: Effects of calcining temperature and heating rate on properties of high-permeability NiCuZn ferrites. J. Magn. Magn. Mater. 302, 278–281 (2006)

    ADS  Google Scholar 

  26. Sujatha, C., Venugopal Reddy, K., Sowri Babu, K., Ramachandra Reddy, A., Rao, K.H.: Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086 (2013)

    Google Scholar 

  27. Shrotri, J.J., Kulkarni, S.D., Deshpande, C.E., Mitra, A., Sainkar, S.R., Anil Kumar, P.S., Date, S.K.: Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method. Mater. Chem. Phys. 59, 1–5 (1999)

    Google Scholar 

  28. Ahmed, T.T., Rahman, I.Z., Rahman, M.A.: Study on the properties of the copper substituted NiZn ferrites. J. Mater. Process. Technol. 153–154, 797–803 (2004)

    Google Scholar 

  29. Kin, O., Low, F.R.: Sale: Effects of calcining temperature and heating rate on properties of high-permeability NiCuZn ferrites. J. Magn. Magn. Mater. 246, 30–35 (2002)

    ADS  Google Scholar 

  30. Rehman, M.L., Khan, M.H.R., Mahmud, S.T., Akther Hossain, A.K.M.: Sintering temperature dependent permeability of nanocrystalline Ni0.20Cu0.30Zn0.50Fe2O4 ferrite. J. Bangladesh Acad. Sci. 35(1), 67–75 (2011)

    Google Scholar 

  31. Akther Hossain, A.K.M., Rehman, M.L.: Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.50−xCuxZn0.50Fe2O4 ferrites. J. Magn. Magn. Mater. 323, 1954–1962 (2011)

    ADS  Google Scholar 

  32. Mahesh Kumar, A., Chaitanya Varma, M., Choudary, G.S.V.R.K., Rao, K.S., Rao, K.H., Krishna, G.G.: DC resistivity and magnetic parameters of Ni-Cr-Zn nanoferrites. J. Optoelectron. Adv. M. 12, 2386–2390 (2010)

    Google Scholar 

  33. Gabal, M.A., Al Angari, Y.M., Al-Juad, S.S.: A study on Cu substituted Ni–Cu–Zn ferrites synthesized using egg-white. J. Alloys Compd. 492, 411–415 (2010)

    Google Scholar 

  34. Ahmed, T.T., Rehman, I.Z., Tofail, S.A.M.: Effect of copper ion distribution on the magnetization of nanoscaledNiZn ferrite. J. Magn. Magn. Mater. 272-276, 2250–2252 (2004)

    ADS  Google Scholar 

  35. Wang, S.-F., Wang, Y.-R., Yang, T.C.K.: Densification and magnetic properties of low-fire NiCuZn ferrites. J. Magn. Magn. Mater. 220, 129–138 (2000)

    ADS  Google Scholar 

  36. Das, P.S., Singh, G.P.: Structural, magnetic and dielectric study of Cu substituted NiZn ferrite nanorod. J. Magn. Magn. Mater. 401, 918–924 (2016)

    ADS  Google Scholar 

  37. Sodaee, T., Ghasemi, A., Razavi, R.S.: Controlled growth of large-area arrays of gadolinium-substituted cobalt ferrite nanorods by hydrothermal processing without use of any template. Ceram. Int. 42, 17420–17428 (2016)

    Google Scholar 

  38. Zhang, Z., Rondinone, A.J., Ma, J.-X., Shen, J., Dai, S.: Morphologically templated growth of aligned spinel CoFe2O4 nanorods. Adv. Mater. 17, 1415–1419 (2015)

    Google Scholar 

  39. Li, Q., Wang, Y., Chang, C.: Study of Cu, Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method. J. Alloys Compd. 505, 523–526 (2010)

    Google Scholar 

  40. Nidhin, M., Nazeer, S.S., Jayasree, R.S., Kiran, M.S., Naira, B.U., Sreeram, K.J.: Flower shaped assembly of cobalt ferrite nanoparticles: application as T2 contrast agent in MRI. RSC Adv. 3, 6906–6912 (2013)

    Google Scholar 

  41. Sangmanee, M., Maensiri, S.: Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl. Phys. A Mater. Sci. Process. 97, 167–177 (2009)

    ADS  Google Scholar 

  42. Shahane, G.S., Kumar, A., Arora, M., Pant, R.P., Lal, K.: Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322, 1015–1019 (2010)

    ADS  Google Scholar 

  43. Darby, M.I., Isaac, E.D.: Magnetocrystalline anisotropy of ferro and ferrimagnetics. IEEE Trans. Magn. 10, 259–304 (1974)

    ADS  Google Scholar 

  44. Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L.: Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J. Magn. Magn. Mater. 251, 316–322 (2002)

    ADS  Google Scholar 

  45. Khan, Z.H., Mahbubur Rahman, M., Sikder, S.S., Hakim, M.A., Saha, D.K.: Complex permeability of Fe-deficient Ni–Cu–Zn ferrites. J. Alloys Compd. 548, 208–215 (2013)

    Google Scholar 

  46. Parvatheswar Rao, B.: KHRao: Design aspects in processing of Ni-Zn ferrites for high frequency applications. J. Mater. Sci. Lett. 22, 1607 (2003)

    Google Scholar 

  47. Srinivasa Rao, K., Appa Rao, P., Chaitanya Varma, M., Rao, K.H.: Development of least sized magnetic nanoparticles with high saturation magnetization. J. Alloys Compd. 750, 838–847 (2018)

    Google Scholar 

  48. Nam, J.H., Jung, H.H., Shin, J.Y., Oh, J.H.: The effect of Cu substitution on the electrical and magnetic properties of NiZn ferrites. IEEE Trans. Magn. 31, 3985–3987 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Vijayalakshmi, Head of PMG, IGCAR, Kalpakkam and ACMS, IIT Kanpur in extending FESEM and VSM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prameela.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.J., Prameela, P., Rao, K.S. et al. Structural and Magnetic Properties of Copper-Substituted Nickel–Zinc Nanoparticles Prepared by Sol-Gel Method. J Supercond Nov Magn 33, 693–705 (2020). https://doi.org/10.1007/s10948-019-05407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05407-y

Keywords

Navigation