Skip to main content
Log in

Survival of Topological Surface States in Cobalt Doped Sb2Te3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Sb2-xCoxTe3 (x = 0, 0.05, 0.3) nanostructures have been synthesized using microwave-assisted solvothermal synthesis technique. The x = 0 and x = 0.05 samples show a semiconducting-like resistivity with an upturn in the low temperature (T < 20 K) region and a gradual drop at the high temperature region. A metal-like resistivity at high temperature along with an upturn at low temperature is observed as the concentration of cobalt is increased to x = 0.3. Resistivity upturn of the samples is evaluated as the competition between electron-electron interaction (EEI) effect and quantum interference effect (QIE). Magnetoresistance (MR) of the x = 0 and x = 0.05 samples at the very low magnetic field and at low temperatures show disorder-induced weak localization (WL) which disappears at high temperature, whereas x = 0.3 sample shows only weak anti-localization (WAL). The high-field MR of x = 0 and 0.3 samples exhibits power law dependency at 2 K. High-field MR reveals the existence of the surface state as well as bulk state conduction in the materials. Thermoelectric power measurement of the nanostructures exhibits positive Seebeck coefficients denoting p-type carriers which vary quasi linearly with temperature and decrease with the incorporation of cobalt in the systems. An enhancement in power factor of 47% is observed near room temperature when the concentration of cobalt is increased from x = 0 to x = 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasan, M.Z., Kane, C.L.: Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. Qi, X.L., Zhang, S.C.: Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  ADS  Google Scholar 

  3. Stern, A., Netanel, H.L.: Science. 339, 1179–1184 (2013)

    Article  ADS  Google Scholar 

  4. Liu, M., Zhang, J., Chang, C.Z., Zhang, Z., Feng, X., Li, K., He, K., Wang, L.L., Chen, X., Dai, X., Fang, Z.: Phys. Rev. Lett. 108, 036805 (2012)

    Article  ADS  Google Scholar 

  5. Yang, Q.I., Dolev, M., Zhang, L., Zhao, J., Fried, A.D., Schemm, E., Kapitulnik, A.: Phys. Rev. B. 88, 081407 (2013)

    Article  ADS  Google Scholar 

  6. Bera, S., Behera, P., Mishra, A.K., Krishnan, M., Patidar, M.M., Venkatesh, R.: Appl. Surf. Sci. 496, 143654 (2019)

    Article  Google Scholar 

  7. Flores, E.M.M.: Microwave-assisted sample preparation for trace element determination. Newnes. (2014)

  8. Dong, G.H., Zhu, Y.J., Chen, L.D.: CrystEngComm. 13, 6811–6816 (2011)

    Article  Google Scholar 

  9. Yan, X., Zheng, W., Liu, F., Yang, S., Wang, Z.: Sci. Rep. 6, 37722 (2016)

    Article  ADS  Google Scholar 

  10. Sharath Chandra, L.S., Lakhani, A., Jain, D., Pandya, S., Vishwakarma, P.N., Gangrade, M., Ganesan, V.: Rev. Sci. Instrum. 79, 103907 (2008)

    Article  ADS  Google Scholar 

  11. Urkude, R.R., Rawat, R., Palikundwar, U.A.: J. Phys. Condens. Matter. 29, 495602 (2017)

    Article  Google Scholar 

  12. Sultana, R., Gurjar, G., Patnaik, S., Awana, V.P.S.: Mater. Res. Express. 5, 046107 (2018)

    Article  ADS  Google Scholar 

  13. Cao, H., Xu, S., Miotkowski, I., Tian, J., Pandey, D., Hasan, M.Z., Chen, Y.P.: Phys. Phys. Status Solidi RRL. 7(1–2), 133–135 (2013)

    Article  ADS  Google Scholar 

  14. Shun, Q.S.: Phys. Rev. B. 92, 035203 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lu, H.Z., Shun, Q.S.: Chin. Phys. B. 25, 117202 (2016)

    Article  ADS  Google Scholar 

  16. Lakhani, A., Kumar, D.: Appl. Phys. Lett. 114, 182101 (2019)

    Article  ADS  Google Scholar 

  17. Lu, H.Z., Shen, S.Q.: Phys. Rev. Lett. 112, 146601 (2014)

    Article  ADS  Google Scholar 

  18. Lu, H.Z., Shen, S.Q.: Proc. SPIE-9167(Spintronics VII), 91672E (2014)

    Google Scholar 

  19. Kou, X., Lang, M., Fan, Y., Jiang, Y., Nie, T., Zhang, J., Jiang, W., Wang, Y., Yao, Y., He, L., Wang, K.L.: ACS Nano. 7, 9205 (2013)

    Article  Google Scholar 

  20. Zhang, D., Richardella, A., Rench, D.W., Xu, S.Y., Kandala, A., Flanagan, T.C., Awschalom, D.D.: Phys. Rev. B. 86, 205127 (2012)

    Article  ADS  Google Scholar 

  21. Mitra, S., Girish, C.T., Diana, M., Dan, S.: Sci. Rep. 6, 37687 (2016)

    Article  ADS  Google Scholar 

  22. Cao, Q., Frank, F.Y., Lina, S., Feixiang, X., Guolei, L., Xiaolin, W.: Nanotechnology. 28, 475703 (2017)

    Article  Google Scholar 

  23. Cheng, B., Hongwei, Q., Jifan, H.: J. Phys. D. Appl. Phys. 50, 445001 (2017)

    Article  ADS  Google Scholar 

  24. Tikhonenko, F.V., Horsell, D.W., Gorbachev, R.V., Savchenko, A.K.: Phys. Rev. Lett. 100, 056802 (2008)

    Article  ADS  Google Scholar 

  25. Niyogi, S., Elena, B., Jeongmin, H., Sakhrat, K., Claire, B., de Heer, W., Robert, C.H.: J. Phys. Chem. Lett. 2, 2487 (2011)

    Article  Google Scholar 

  26. Cao, H., Yu, Q., Colby, R., Pandey, D., Park, C.S., Lian, J., Hussain, M.: J. Appl. Phys. 107, 044310 (2010)

    Article  ADS  Google Scholar 

  27. Yue, Z., Igor, L., Shailesh, K., Donghan, S., Xiaolin, W., Shixue, D., Kostya, O.: Nanoscale. 5, 9283 (2013)

    Article  ADS  Google Scholar 

  28. Abrikosov, A.A.: Phys. Rev. B. 58, 2788 (1998)

    Article  ADS  Google Scholar 

  29. Wang, X., Yi, D., Shixue, D., Chao, Z.: Phys. Rev. Lett. 108, 266806 (2012)

    Article  ADS  Google Scholar 

  30. Assaf, B.A., Cardinal, T., Wei, P., Katmis, F., Moodera, J.S., Heiman, D.: Appl. Phys. Lett. 102, 012102 (2013)

    Article  ADS  Google Scholar 

  31. Wang, J., DaSilva, A.M., Chang, C.Z., He, K., Jain, J.K., Saarth, N., Ma, X.C., Xue, Q.K., Chan, M.H.: Phys. Rev. B. 83, 245438 (2011)

    Article  ADS  Google Scholar 

  32. Takagaki, Y., Jenichen, B., Jahn, U., Ramsteiner, M., Friedland, K.J.: Phys. Rev. B. 85, 115314 (2012)

    Article  ADS  Google Scholar 

  33. Wang, W., Zou, W.Q., He, L., Peng, J., Zhang, R., Wu, X.S., Zhang, F.M.: J. Phys. D. Appl. Phys. 48, 205305 (2015)

    Article  ADS  Google Scholar 

  34. Cava, R.J., Ji, H., Fuccillo, M.K., Gibson, Q.D., Hor, Y.S.J.: Mater. Chem. C. 1, 3176 (2013)

    Article  Google Scholar 

  35. Yang, H.Q., Miao, L., Liu, C.Y., Li, C., Honda, S., Iwamoto, Y., Huang, R., Tanemura, S.: ACS Appl. Mater. Interfaces. 7, 14263–14271 (2015)

    Article  Google Scholar 

  36. Yang, H.Q., Miao, L., Zhang, M., Ohno, K., Zhou, J.H., Gu, H., Shen, Y., Lin, H.J.: Electron. Mater. 43, 2165–2173 (2014)

    Google Scholar 

  37. Das, D., Malik, K., Deb, A.K., Dhara, S., Bandyopadhyay, S., Banerjee, A.J.: Appl. Phys. 118, 045102 (2015)

    Article  Google Scholar 

  38. Drašar, Č., Steinhart, M., Lošťák, P., Shin, H.K., Dyck, J.S., Uher, C.: J. Solid State Chem. 178, 1301–1307 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M. Gupta and Layant Behera for XRD measurements, Mr. M. P. Saravanan for supplying liquid He and N2 for measurements, DST, India for their initial support for 14 T PPMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bera.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S., Behera, P., Mishra, A. et al. Survival of Topological Surface States in Cobalt Doped Sb2Te3. J Supercond Nov Magn 33, 1645–1651 (2020). https://doi.org/10.1007/s10948-019-05358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05358-4

Keywords

Navigation