Skip to main content
Log in

Facile Synthesis of Spinel Ferrites with Enhanced Magnetic Properties from Two Intractable Metallurgical Resources: Zinc-Bearing Dust and Nickel Laterite Ore

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nickel laterite ore and zinc-bearing dust are multi-metal-associated and intractable resources. Comprehensive and cooperative utilization of zinc-bearing dust and nickel laterite ore for the preparation of spinel ferrites with enhanced magnetic properties by a facile process was proposed. The structure and magnetic properties of as-prepared spinel ferrites were characterized by X-ray diffraction (XRD), Raman spectroscopy, and Physical Property Measurement System (PPMS). The effect of mass ratios of zinc-bearing dust to nickel laterite ore, calcination temperature, and Zn substitution content on the as-prepared samples was investigated in detail. A single phase of Zn-substituted spinel ferrites (x= 0.00, 0.10, 0.20, and 0.30) could be obtained when the mass ratios were controlled at 1:0.4, 1:4:1.8, 1:2:1.5, and 1:1:1.2 after being calcined at 900 C for 30 min, respectively. The magnetic property tests present that the as-prepared spinel ferrite exhibits enhanced magnetic properties with the saturation magnetization (Ms) value of 66.8 emu g− 1 and the coercivity (Hc) value of 26 Oe when the mass ratio was controlled at 1:1:1.2. This research could provide an effective way to transfer two intractable resources into soft magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pileni, M.P.: Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv. Funct. Mater. 11, 323–336 (2001)

    Article  Google Scholar 

  2. Lin, K.S., Adhikari, A.K., Tsai, Z.Y., Chen, Y.P., Chien, T.T., Tsai, H.B.: Synthesis and characterization of nickel ferrite nanocatalysts for CO2 decomposition. Catal. Today 174, 88–96 (2011)

    Article  Google Scholar 

  3. Shaabani, A., Hezarkhani, Z., Nejad, M.K.: Cr- and Zn-substituted cobalt ferrite nanoparticles supported on guanidine–modified graphene oxide as efficient and recyclable catalysts. J. Mater. Sci. 52(1), 1–17 (2017)

    Article  Google Scholar 

  4. Martinez-Vargas, S., Martínez, A.I., Hernández-Beteta, E.E., Mijangos-Ricardez, O.F., Vázquez-Hipólito, V., Patiño-Carachure, C., Hernandez-Flores, H., Loṕez-Luna, J.: Arsenic adsorption on cobalt and manganese ferrite nanoparticles. J. Mater. Sci. 52, 6205–6215 (2017)

    Article  ADS  Google Scholar 

  5. Luadthong, C., Khemthong, P., Nualpaeng, W., Faungnawakij, K.: Copper ferrite spinel oxide catalysts for palm oil methanolysis. Appl. Catal. A-Gen. 525, 68–75 (2016)

    Article  Google Scholar 

  6. Durmus, Z., Durmus, A., Kavas, H.: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201–1213 (2015)

    Article  ADS  Google Scholar 

  7. Ali, R., Mahmood, A., Khan, M.A., Chughtai, A.H., Shahid, M., Shakir, I., Warsi, M.F.: Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloys Compd. 584, 363–368 (2014)

    Article  Google Scholar 

  8. Oumezzinea, E., Hcinia, S., Baazaouia, M., Hlilb, E.K., Oumezzinea, M.: Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2 O 4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technol. 278, 189–195 (2015)

    Article  Google Scholar 

  9. Zhang, Z.G., Yao, G.C., Zhang, X., Ma, J.F., Lin, H.: Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Inter. 41(3), 4523–4530 (2015)

    Article  Google Scholar 

  10. Gao, J.M., Zhang, M., Guo, M.: Effect of Ni substitution content on structure and magnetic properties of spinel ferrites synthesized from laterite leaching solutions. Ceram. Inter. 41(10), 15283–15286 (2015)

    Article  Google Scholar 

  11. Sodaee, T., Ghasemi, A., Razavi, R.S.: Controlled growth of large-area arrays of gadolinium-substituted cobalt ferrite nanorods by hydrothermal processing without use of any template. Ceram. Inter. 42(15), 17420–17428 (2016)

    Article  Google Scholar 

  12. Thota, S., Kashyap, S.C., Sharma, S.K., Reddy, V.R.: Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2015)

    Article  ADS  Google Scholar 

  13. Zhu, Z., Pranolo, Y., Zhang, W., Wang, W., Cheng, C.Y.: Precipitation of impurities from synthetic laterite leach solutions. Hydrometallurgy 104, 81–85 (2010)

    Article  Google Scholar 

  14. Wang, K., Li, J., McDonald, R.G., Browner, R.E.: The effect of iron precipitation upon nickel losses from synthetic atmospheric nickel laterite leach solutions: statistical analysis and modelling. Hydrometallurgy 109, 140–152 (2011)

    Article  Google Scholar 

  15. Chang, Y.F., Zhai, X.J., Li, B.C., Fu, Y.: Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate. Hydrometallurgy 101, 84–87 (2010)

    Article  Google Scholar 

  16. Meng, L., Qu, J.K., Guo, Q., Xie, K.Q., Zhang, P.Y., Han, L.X., Zhang, G.Z., Qi, T.: Recovery of Ni, Co, Mn, and Mg from nickel laterite ores using alkaline oxidation and hydrochloric acid leaching. Sep. Purif. Technol. 143, 80–87 (2015)

    Article  Google Scholar 

  17. Gao, J.M., Zhang, M., Guo, M.: Innovative methodology for comprehensive utilization of saprolite laterite ore: recovery of metal-doped nickel ferrite and magnesium hydroxide. Hydrometallurgy 158, 27–34 (2015)

    Article  Google Scholar 

  18. Gao, J.M., Yan, Z.K., Liu, J., Zhang, M., Guo, M.: A novel hydrometallurgical approach to recover valuable metals from laterite ore. Hydrometallurgy 150, 161–166 (2014)

    Article  Google Scholar 

  19. Gao, J.M., Zhang, M., Guo, M.: Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid state reaction method. Ceram. Inter. 41, 8155–8162 (2015)

    Article  Google Scholar 

  20. Džunuzović, A.S., Ilić, N.I., Petrović, M.M.V., Bobić, J.D., Stojadinović, B., Dohčević-Mitrović, Z., et al.: Structure and properties of Ni–Zn ferrite obtained by auto-combustion method. J. Magn. Magn. Mater. 374, 245–251 (2015)

    Article  ADS  Google Scholar 

  21. Choodamani, C., Rudraswamy, B., Chandrappa, G.T.: Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram. Inter. 42(9), 10565–10571 (2016)

    Article  Google Scholar 

  22. Gao, J.M., Yan, Z.K., Liu, J., Zhang, M., Guo, M.: Synthesis, structure and magnetic properties of Zn substituted Ni–Co–Mn–Mg ferrites. Mater. Lett. 141, 122–124 (2015)

    Article  Google Scholar 

  23. Hagni, A.M., Hagni, R.D., Demars, C.: Mineralogical characteristics of electric arc furnace dusts. JOM 43, 28–30 (1991)

    Article  Google Scholar 

  24. Morcali, M.H., Yucel, O., Aydin, A., Derin, B.: Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace. J. Min. Metal. B 48, 173–184 (2012)

    Article  Google Scholar 

  25. Oustadakis, P., Tsakiridis, P.E., Katsiapi, A., Agatzini-Leonardou, S.: Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid. J. Hazard. Mater. 179, 1–7 (2010)

    Article  Google Scholar 

  26. Tsakiridis, P.E., Oustadakis, P., Katsiapi, A., Agatzini-Leonardou, S.: Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning. J. Hazard. Mater. 179, 8–14 (2010)

    Article  Google Scholar 

  27. Chen, D., Mei, C.Y., Yao, L.H., Jin, H.M., Qian, G.R., Xu, Z.P.: Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. J. Hazard. Mater. 192(3), 1675–1682 (2011)

    Article  Google Scholar 

  28. Lv, L., Bian, X., Zhou, J., Zhu, G., Liu, P., Chen, X., Liu, Q.: Synthesis of NiFe2 O 4 nanocrystalline with various size by hydrothermal method. J. Syn. C Crys. 39, 977–981 (2010)

    Google Scholar 

  29. Aakash, R., Das, D., Mukherjee, S.: Choubey Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. J. Alloys Compd. 668, 33–39 (2016)

    Article  Google Scholar 

  30. Yan, Z.K., Gao, J.M., Li, Y., Zhang, M., Guo, M.: Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv. 5, 92778–92787 (2015)

    Article  Google Scholar 

  31. Mohit, K., Gupta, V.R., Gupta, N., Rout, S.K.: Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2 O 4 for antenna applications. Ceram. Inter. 40(1), 1575–1586 (2014)

    Article  Google Scholar 

  32. Praveena, K., Chen, H.W., Liu, H.L., Sadhana, K., Murthy, S.R.: Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2016)

    Article  ADS  Google Scholar 

  33. Bobade, D.H., Rathod, S.M., Mane, M.L.: Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B: Condens. Matter 407(18), 3700–3704 (2012)

    Article  ADS  Google Scholar 

  34. Mozaffari, M., Zare, Y.: Enhanced magnetization in Mg–Zn ferrite nanoparticles prepared by mechanochemical processing. J. Supercond. Novel Magn. 28(10), 3157–3162 (2015)

    Article  Google Scholar 

  35. Kavitha, N., Manohar, P.: Magnetic and electrical properties of magnesium-substituted Ni–Zn ferrites. J. Supercond. Novel Magn. 29(8), 2151–2157 (2016)

    Article  Google Scholar 

  36. Owens, F.J.: The physics of magnetism. Physics of Magnetic Nanostructures, pp. 19–34. Wiley, Berlin (2015)

    Book  Google Scholar 

Download references

Funding

The work was financially supported by the National Key R&D Program of China (No. 2017YFB0603102), the Program for Sanjin Scholars of Shanxi Province, the National Natural Science Foundation of China (Nos. 51272025, 50872011, and 51072022), and the National Basic Research Program of China (Nos. 2014CB643401 and 2013AA032003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ming Gao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Jm., Cheng, F. Facile Synthesis of Spinel Ferrites with Enhanced Magnetic Properties from Two Intractable Metallurgical Resources: Zinc-Bearing Dust and Nickel Laterite Ore. J Supercond Nov Magn 31, 2655–2660 (2018). https://doi.org/10.1007/s10948-017-4531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4531-5

Keywords

Navigation