Skip to main content
Log in

Stoichiometry Analysis and Normal-State Properties of SmBa2Cu3−x Ru x O7−δ Superconducting Phase

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

An Erratum to this article was published on 21 December 2015

Abstract

The electrical resistivity of normal and superconducting states for SmBa2Cu3−x Ru x O7−δ (Sm-123) phase with 0.00 ≤ x ≤ 0.50, prepared by the conventional solid-state reaction technique, was studied. X-ray powder diffraction (XRD), scanning electron microscope (SEM), particle-induced X-ray emission (PIXE), Rutherford backscattering spectroscopy (RBS) and electrical resistivity measurements were performed in order to investigate the effect of Ru4+ ions substitution in Sm-123 phase. Both the phase formation and superconducting transition temperature T c enhance up to x = 0.05. For x > 0.05, suppression of both the phase formation and T c is observed and the superconductivity is completely destroyed around x = 0.50. The normal-state electrical resistivity was analyzed by the two- and three-dimensional variable range hopping (2D-VRH and 3D-VRH) and Coulomb gap CG. The dominant mechanism for Sm-123 phase is CG with x ≤ 0.20 while is 3D-VRH for x ≥ 0.30.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chong, T.V., Kambe, S., Ishii, O.: Physica C 468, 1214 (2008)

    Article  ADS  Google Scholar 

  2. Singhal, R.K.: J. Alloys Compd 495, 1 (2010)

    Article  ADS  Google Scholar 

  3. Yao, X., Oka, A., Izumi, T., Shiohara, Y.: Physica C 339, 99 (2000)

    Article  ADS  Google Scholar 

  4. Saleh, A.M., Abu-Samreh, M.M., Soliman, M.H., Leghrouz, A.A., Ketaneh, R.M.-L., Darwish, S., Abu Taha, M.I.: Thin Solid Films 468, 93 (2004)

    Article  ADS  Google Scholar 

  5. Oh, S.S., Ha, H.S., Kim, H.S., Ko, R.K., Song, K.J., Ha, D.W., Kim, T.H., Lee, N.J., Youm, D., Yang, J.S., Kim, H.K., Yu, K.K., Moon, S.H., Ko, K.P., Yoo, S.I.: Supercond. Sci. Technol 21, 034003 (2007)

    Article  ADS  Google Scholar 

  6. Fuger, R., Eisterer, M., Oh, S.S., Weber, H.W.: Physica C 323–325, 470 (2010)

    Google Scholar 

  7. Zeng, D.C., Wang, Y.Z., Zhou, G.F, de Boer, F.R., Jiang, M., Zhang, C., Huang, J.G., Qiao, G.W., Chuang, Y.C.: J. Alloys Compd. 228, 79 (1995)

    Article  Google Scholar 

  8. Xue, R., Chen, Z., Dai, H., Li, T., Xue, Y., Hao, J.: Physica C 475, 20 (2012)

    Article  ADS  Google Scholar 

  9. Xue, R., Dai, H., Chen, Z., Li, T., Xue, Y.: Mater. Sci. Eng. B 178, 363 (2013)

    Article  Google Scholar 

  10. Xue, R., Chen, Z., Xue, Y., Dai, H., Li, T., Chen, J.: J. Supercond. Nov. Magn 27, 1201 (2014)

    Article  Google Scholar 

  11. Rehn, L.E.: Nucl. Instrum. Methods Phys. Res., Sect B 64, 161 (1992)

    Article  ADS  Google Scholar 

  12. Awad, R., Abou-Aly, A.I., Roumié, M., Mahmoud, S.A., Barakat, M.ME.: Physica C 477, 74 (2012)

    Article  ADS  Google Scholar 

  13. Awad, R., Roumié, M., Abou-Aly, A.I., Mahmoud, S.A., Barakat, M.M.: J. Supercond. Nov. Magn 25, 273 (2012)

    Article  Google Scholar 

  14. Barakat, M.ME., Awad, R., Abou-Aly, A.I., Roumié, M., Aly, N., Ibrahim, S.: J. Supercond. Nov. Magn 28, 453 (2015)

    Article  Google Scholar 

  15. Efors, A.L., Shaklovskii, B.I.: J. Phys 8, L49 (1975)

    ADS  Google Scholar 

  16. Loktev, V.M., Quick, R.M., Sharapov, S.G.: Phys. Rep 349, 1 (2001)

    Article  ADS  Google Scholar 

  17. Mohammadizadah, M.R., Akhavan, M.: Eur. Phys. J. B 42, 321 (2004)

    Article  ADS  Google Scholar 

  18. Quitmann, C., Andrich, D., Jarchow, C., Fleuster, M., Beschoten, B., Guntherodt, G., Moshchalkov, V.V., Mante, G., Manzke, R.: Phys. Rev. B 46, 11813 (1992)

    Article  ADS  Google Scholar 

  19. Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors, p 45. Springer, Berlin (1984)

    Book  Google Scholar 

  20. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials, Second edition. Clarendon, Oxford (1979)

    Google Scholar 

  21. Mohammadizadeh, M.R., Akhavan, M.: Eur. Phys. J. B 33, 381 (2003)

    Article  ADS  Google Scholar 

  22. Ambegaokar, V., Halperin, B.I., Langer, J.S.: Phys. Rev. B 4, 2612 (1971)

    Article  ADS  Google Scholar 

  23. Kaveh, M., Mott, N.F.: Phys. Rev. Lett 6(8), 1904 (1992)

    Article  ADS  Google Scholar 

  24. Quitmann, C., Fleuster, M., Jarchow, C., Andrich, D., Paulose, P.L., Gü, G.: Physica C 185–189, 1337 (1991)

    Article  Google Scholar 

  25. Roumié, M., Nsouli, B., Zahraman, K., Reslan, A.: Nucl. Instrum. Methods Phys. Res., Sect B 219–220, 389 (2004)

    Article  Google Scholar 

  26. Harrison, J.F., Eldred, R.A.: Adv. X-ray Anal 17, 560 (1973)

    Google Scholar 

  27. Nejedly, Z., Campbell, J.L., Gama, S.: Nucl. Instrum. Methods Phys. Res., Sect B 136, 219–220 (2004)

    Google Scholar 

  28. Maxwell, J.A., Teesdale, W.J., Campbell, J.A.: Nucl. Instrum. Methods Phys. Res., Sect B 95, 407 (1995)

    Article  ADS  Google Scholar 

  29. Mayer, M.: SIMNRA Use’s guide. Report IPP 9/113, Max-Planck Institut für Plasmaphysik. Garching, Germany (1997)

    Google Scholar 

  30. Awad, R., Abou-Aly, A.I., Mahmoud, S.A., Barakat, M.ME.: J. Supercond. Nov. Magn 24, 2227 (2011)

    Article  Google Scholar 

  31. Shakeripour, H., Akhavan, M.: Supercond. Sci. Technol 14, 213 (2001)

    Article  ADS  Google Scholar 

  32. Mazaheri, M., Mofakham, S., Akhavan, M.: Supercond. Sci. Technol 21, 095006 (2008)

    Article  ADS  Google Scholar 

  33. Gurbich, A.F.: Nucl. Instrum. Methods Phys. Res., Sect. B 129, 311 (1997)

    Article  ADS  Google Scholar 

  34. Ramos, A.R., Paul, A., Rijniers, L., da Silva, M.F., Soares, J.C.: Nucl. Instrum. Methods Phys. Res., Sect. B 190, 95 (2002)

    Article  ADS  Google Scholar 

  35. Tokura, Y., Torrance, J.B., Huang, T.C., Nazzal, A.I.: Phys. Rev. B 38, 7156 (1988)

    Article  ADS  Google Scholar 

  36. Mirzadeh, M., Akhavan, M.: Eur. Phys. J. B 43, 305 (2005)

    Article  ADS  Google Scholar 

  37. Zhao, Y., Chen, B., Kennedy, H., Zhang, H., Wang, F.: Physica C 25(2), 381 (1995)

    Article  ADS  Google Scholar 

  38. Abou-Aly, A.I., Ibrahim, I.H., Awad, R., El-Harizy, A., Khalaf, A.: J Supercond. Nov. Magn 23, 1325 (2010)

    Article  Google Scholar 

  39. Koo, J.H., Cho, G.: J. Phys., Condens. Matter 15, L729 (2003)

    Article  ADS  Google Scholar 

  40. Eskes, H., Sawatzky, G.A.: Phys. Rev. Lett 61, 1415 (1988)

    Article  ADS  Google Scholar 

  41. Singh, S., Khan, D.C.: Physica C 222, 233 (1994)

    Article  ADS  Google Scholar 

  42. Yasuoka, H., Kakihana, M., Mazaki, H.: Physica C 185–189, 803 (1991)

    Article  Google Scholar 

  43. Abrikosov, A.A., Gor’kov, L.P.: Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  44. Vélez, M., Cyrille, M.C., Kim, S., Vicent, J.L., Schuller Ivan, K.: Phys. Rev. B 59, 14659 (1999)

    Article  ADS  Google Scholar 

  45. Yamani, Z., Akhavan, M.: Solid State Commun 107, 197 (1998)

    Article  ADS  Google Scholar 

  46. Kariminezhad, M., Akhavan, M.: Eur. Phys. J. B 47, 47 (2005)

    Article  ADS  Google Scholar 

  47. Jung, W.-H.: Physica B 304, 75 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was performed in the Superconductivity and Metallic-Glass Lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt. The authors are grateful for the support of Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRS, Beirut, Lebanon for PIXE and RBS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. ME. Barakat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakat, M.M., Awad, R., Abou-Aly, A.I. et al. Stoichiometry Analysis and Normal-State Properties of SmBa2Cu3−x Ru x O7−δ Superconducting Phase. J Supercond Nov Magn 29, 289–300 (2016). https://doi.org/10.1007/s10948-015-3263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3263-7

Keywords

Navigation