Skip to main content
Log in

Filtering Properties of Photonic Crystal Dual-Channel Tunable Filter Containing Superconducting Defects

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we analyze filtering properties in a photonic crystal (PC) dual-channel tunable filter. The filter structure containing twin superconducting thin films is denoted as (1/2)MS1(2/1)NS2(1/2)M. Here, 1 and 2 are dielectrics of SrTiO3 and Al2O3, respectively. S1 and S2 are two high-temperature superconducting thin films taken to be the typical system, YBa2Cu3O7−x . The two channel frequencies can be designed to locate within the photonic band gap (PBG) of the original PC (1/2)M. Channel frequencies can be significantly changed by changing N, the stack number of the center PC. With the use of superconducting defects, channel frequencies are temperature-dependent, that is, the filter is thermally tunable. The proposed filter structure is of technical use in superconducting photonic applications at terahertz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  2. Soukoulis, C.M.: Photonic Crystals and Light Localization in the 21st Century. Kluwer, Dordrecht (2001)

    Book  Google Scholar 

  3. Halevi, P., Ramos-Mendieta, F.: Tunable photonic crystals with semiconducting constituents. Phys. Rev. Lett. 85, 1875–1878 (2000)

    Article  ADS  Google Scholar 

  4. Orfanidis, S.J.: Electromagnetic waves and antennas Chapter 7. Rutger University (2010). www.ece.rutgers.edu/~orfanidi/ewa

  5. Wu, C.-J., Liao, J.-J., Chang, T.-W.: Tunable multilayer Fabry–Perot resonator using electro-optical defect layer. J. Electromagn. Waves Appl. 24, 531–542 (2010)

    Google Scholar 

  6. Sanchez, A.S., Halevi, P.: Simulation of tuning of one-dimensional photonic crystals in the presence of free electrons and holes. J. Appl. Phys. 94, 797–799 (2003)

    Article  ADS  Google Scholar 

  7. Liu, C., Ye, J., Zhang, Y.: Thermally tunable THz filter made of semiconductors. Opt. Commun. 283, 865–868 (2010)

    Article  ADS  Google Scholar 

  8. Chang, T.-W., Wu, J.-J., Wu, C.-J.: Complex photonic band structures in a photonic crystal containing lossy semiconductor InSb. Prog. Electromagn. Res. 131, 153–167 (2012)

    Article  Google Scholar 

  9. King, T.-C., Yang, Y.-P., Liou, Y.-S., Wu, C.-J.: Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 152, 2189–2192 (2012)

    Article  ADS  Google Scholar 

  10. Lin, W.-H., Wu, C.-J., Yang, T.-J., Chang, S.-J.: Terahertz multichanneled filter in a superconducting photonic crystal. Opt. Express 18, 27155–27166 (2010)

    Article  ADS  Google Scholar 

  11. Lyubchanskii, I.L., Dadoenkova, N.N., Zabolotin, A.E., Lee, Y.P., Rasing, Th.: A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A, Pure Appl. Opt. 36, 114014 (2009)

    Article  ADS  Google Scholar 

  12. Dadoenkova, N.N., Zabolotin, A.E., Lyubchanskii, I.L., Lee, Y.P., Rasing, Th.: One-dimensional photonic crystal with a complex defect containing an ultrathin superconducting sublayer. J. Appl. Phys. 108, 093117 (2010)

    Article  ADS  Google Scholar 

  13. Barvestani, J.: Analytical investigation of one-dimensional photonic crystals with a dielectric–superconducting pair defect. Opt. Commun. 284, 231–235 (2011)

    Article  ADS  Google Scholar 

  14. Wu, C.-J., Liu, C.-L., Yang, T.-J.: Investigation photonic band structure in a one-dimensional superconducting photonic crystal. J. Opt. Soc. Am. B, Opt. Phys. 26, 2089–2094 (2009)

    Article  ADS  Google Scholar 

  15. Raymond Ooi, C.H., Au Yeung, T.C., Kam, C.H., Lim, T.K.: Photonic band gap in a superconductor–dielectric superlattice. Phys. Rev. B 61, 5920–5926 (2000)

    Article  ADS  Google Scholar 

  16. Berman, O.L., Lozovik, Y.E., Eiderman, S.L., Coalson, R.D.: Superconducting photonic crystals: numerical calculation of the band structure. Phys. Rev. B 74, 092505 (2006)

    Article  ADS  Google Scholar 

  17. Poddubny, A.N., Ivchenko, E.L., Lozovik, Yu.E.: Low-frequency spectroscopy of superconducting photonic crystals. Solid State Commun. 146, 143–147 (2008)

    Article  ADS  Google Scholar 

  18. Becerra, G., Moncada-Villa, E., Granada, J.C.: Localized modes in metamaterial-dielectric photonic crystals with a dielectric–superconductor pair defect. J. Supercond. Nov. Magn. 25, 2163–2166 (2012)

    Article  Google Scholar 

  19. Hu, C.-A., Wu, C.-J., Yang, T.-J., Yang, S.-L.: Analysis of effective plasma frequency in a superconducting photonic crystal. J. Opt. Soc. Am. B, Opt. Phys. 30, 366–369 (2013)

    Article  ADS  Google Scholar 

  20. Hu, C.-A., Liu, J.-W., Wu, C.-J., Yang, T.-J., Yang, S.-L.: Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure. Solid State Commun. 157, 54–57 (2013)

    Article  ADS  Google Scholar 

  21. Halevi, P., Reyes-Avendano, J.A., Reyes-Cervantes, J.A.: Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal. Phys. Rev. E 73, R040701 (2006)

    Article  ADS  Google Scholar 

  22. Tian, H., Zi, J.: One-dimensional tunable photonic crystals by means of external magnetic fields. Opt. Commun. 252, 321–329 (2005)

    Article  ADS  Google Scholar 

  23. Hung, H.-C., Wu, C.-J., Yang, T.-J., Chang, S.-J.: Magnetooptical effects in wave properties for a semiconductor photonic crystal at near infrared. IEEE Photon. J. 4, 903–911 (2012)

    Article  Google Scholar 

  24. Meisels, R., Glushko, O., Kuchar, F.: Tuning the flow of light in semiconductor-based photonic crystals by magnetic fields. Photonics Nanostruct. Fundam. Appl. 10, 60–68 (2012)

    Article  ADS  Google Scholar 

  25. Liu, Z., Jin, G.: Extraordinary THz transmission through subwavelength semiconductor slits under antiparallel external magnetic fields. Appl. Phys. A 105, 819–825 (2011)

    Article  ADS  Google Scholar 

  26. Takeda, H., Yoshino, K., Zakhidov, A.A.: Properties of Abrikosov lattices as photonic crystals. Phys. Rev. B, Solid State 70, 085109 (2004)

    Article  ADS  Google Scholar 

  27. Yeh, P.: Optical Waves in Layered Media. Wiley, Singapore (1991)

    Google Scholar 

  28. van Duzer, T., Turner, C.W.: Principles of Superconductive Devices and Circuits. Edward Arnold, London (1981)

    Google Scholar 

Download references

Acknowledgements

C.-J. Wu acknowledges the financial support from the National Science Council of the Republic of China (Taiwan) under Contract No. NSC-100-2112-M-003-005-MY3 and from the National Taiwan Normal University under NTNU100-D-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Jang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JW., Chang, TW. & Wu, CJ. Filtering Properties of Photonic Crystal Dual-Channel Tunable Filter Containing Superconducting Defects. J Supercond Nov Magn 27, 67–72 (2014). https://doi.org/10.1007/s10948-013-2259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2259-4

Keywords

Navigation