Skip to main content
Log in

Ab initio Probing of Magnetic and Electronic Properties of Monoclinic ε-WO3 Doped with 3d Transition Metals Within GGA and GGA+U

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Based on ab initio band structure calculations, we have systematically examined the monoclinic tungsten trioxide doped with all 3d metals (M=Sc,Ti,…,Ni,Cu) focusing on the effects of these impurities on the electronic and magnetic properties of ε-WO3. We found that all of the 3d impurity atoms can be divided into two main groups. The first group includes the atoms of the beginning of the 3d row, and for these systems (for example, ε-WO3:Ti) the highest magnetic moments and the peculiarities of the near-Fermi states are due to the atoms of the oxygen lattice of trioxides. On the contrary, the impurity atoms of the end of the 3d row play a dominant role in the formation of magnetic and electronic properties. These results are fair for calculations within both GGA and GGA+U approximations. Finally, there are so-called “border” systems (for example, ε-WO3:Cr), where the Coulomb interactions have a critical influence on the electronic and magnetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lampert, C.: Mater. Today 7, 28 (2004)

    Article  Google Scholar 

  2. Niklasson, G.A., Granqvist, C.G.: J. Mater. Chem. 17, 127 (2007)

    Article  Google Scholar 

  3. Solarska, R., Alexander, B.D., Braun, A., Jurczakowski, R., Fortunato, G., Stiefel, M., Graule, T., Augustynski, J.: Electrochem. Acta 55, 7780 (2010)

    Article  Google Scholar 

  4. Xie, Y.P., Liu, G., Yin, L.C., Cheng, H.M.: J. Mater. Chem. 22, 6746 (2012)

    Article  Google Scholar 

  5. Bullett, D.W.: Solid State Commun. 46, 575 (1983)

    Article  ADS  Google Scholar 

  6. Hjelm, A., Granqvist, C.G., Wills, J.M.: Phys. Rev. B 54, 2436 (1996)

    Article  ADS  Google Scholar 

  7. Salje, E.K.H., Rehmann, S., Pobell, F., Morris, D., Knight, K.S., Herrmannsdoerfer, T., Dove, M.T.: J. Phys. Condens. Matter 9, 6563 (1997)

    Article  ADS  Google Scholar 

  8. Chatten, R., Chadwick, A.V., Rougier, A., Lindan, P.J.D.: J. Phys. Chem. B 109, 3146 (2005)

    Article  Google Scholar 

  9. Wang, F., Di Valentin, C., Pacchioni, G.: Phys. Rev. B 84, 073103 (2011)

    Article  ADS  Google Scholar 

  10. Paluselli, D., Marsen, B., Miller, E.L., Rocheleau, R.E.: Electrochem. Solid-State Lett. 8, G301 (2005)

    Article  Google Scholar 

  11. Nah, Y.C., Paramasivam, I., Hahn, R., Shrestha, N.K., Schmuki, P.: Nanotechnology 21, 105704 (2010)

    Article  ADS  Google Scholar 

  12. Hirai, D., Climent-Pascual, E., Cava, R.E.: Phys. Rev. B 84, 174519 (2011)

    Article  ADS  Google Scholar 

  13. Shein, I.R., Ivanovskii, A.L.: JETP Lett. 95, 66 (2012)

    Article  ADS  Google Scholar 

  14. Wang, F., Di Valentin, C., Pacchioni, G.: J. Phys. Chem. C 116, 8901 (2012)

    Article  Google Scholar 

  15. Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  16. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  17. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  18. Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  19. Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. Wang, L., Maxisch, T., Ceder, C.: Phys. Rev. B 73, 195107 (2006)

    Article  ADS  Google Scholar 

  21. Woodward, P.M., Sleight, A.W., Vogt, T.: J. Solid State Chem. 131, 9 (1997)

    Article  ADS  Google Scholar 

  22. Granqvist, C.G.: Sol. Energy Mater. Sol. Cells 60, 201 (2000)

    Article  Google Scholar 

  23. Bamwenda, R.G., Sayama, R., Arakawa, H.: J. Photochem. Photobiol. A 122, 175 (1999)

    Article  Google Scholar 

  24. Coey, J.M.D.: Solid State Sci. 7, 660 (2005)

    Article  ADS  Google Scholar 

  25. Ivanovskii, A.L.: Phys. Usp. 50, 1031 (2007)

    Article  ADS  Google Scholar 

  26. Volnianska, O., Boguslawski, P.: J. Phys. Condens. Matter 22, 073202 (2010)

    Article  ADS  Google Scholar 

  27. Ivanovskii, A.L.: Phys. Solid State 45, 1829 (2003)

    Article  ADS  Google Scholar 

  28. Gorbunova, M.A., Shein, I.R., Makurin, Yu.N., Kiiko, V.S., Ivanovskii, A.L.: Physica B 400, 47 (2007)

    Article  ADS  Google Scholar 

  29. Suetin, D.V., Shein, I.R., Ivanovskii, A.L.: Physica B 404, 1887 (2009)

    Article  ADS  Google Scholar 

  30. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Ural Branch of the Russian Academy of Sciences, Grant No. 12-T-3-1003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, I.R., Ivanovskii, A.L. Ab initio Probing of Magnetic and Electronic Properties of Monoclinic ε-WO3 Doped with 3d Transition Metals Within GGA and GGA+U . J Supercond Nov Magn 26, 2343–2346 (2013). https://doi.org/10.1007/s10948-013-2185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2185-5

Keywords

Navigation