Skip to main content
Log in

Magnetic Domain Studies of Cobalt Nanostructures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The pulsed laser deposition technique associated with a low energy cluster beam is used to deposit cobalt thin films with a thickness 100–200 nm and cobalt dots of a diameter 100–200 nm on silicon substrates. The deposited thin films of Co are composed of clusters of a size 10–50 nm, with very few large grains as revealed by atomic force microscopy. The observations performed by magnetic force microscopy on as-grown thin films reveal randomly distributed out-of-plane magnetic domain structures. These magnetic domains are aligned linearly by applying an external magnetic field either perpendicular or parallel to the substrate during the deposition. In addition, the effect of film thickness and roughness on multidomains is reported. The increase of roughness resulted in the decrease of magnetic domain width from 200 to 100 nm. This decrease is accompanied by the appearance of instability in the stripe domain pattern. Well separated cobalt dots of diameter in the range of 100–200 nm are also deposited on silicon substrates, which show arc-like multidomains. The domains seem to be oriented along the long axis of the dots. The domain structure of Co nanodots is similar to that of Co thin films indicating strong magnetic coupling of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gregg, J.F., Allen, W., Ounadjela, K., Viret, M., Hehn, M., Thompson, S.M., Coey, J.M.D.: Phys. Rev. Lett. 77, 1580 (1996)

    Article  ADS  Google Scholar 

  2. Li, S., Peyrade, D., Natali, M., Lebib, A., Chen, Y., Ebels, U., Buda, L.D., Ounadjela, K.: Phys. Rev. Lett. 86, 1102 (2001)

    Article  ADS  Google Scholar 

  3. Valdre, G.: Nanostruct. Mater. 10, 419 (1998)

    Article  Google Scholar 

  4. Nguyen, L.T., Lisfi, A., Lodder, J.C.: J. Magn. Magn. Mater. 242–245, 374 (2002)

    Article  Google Scholar 

  5. Louail, L., Ounadjela, K., Hehn, M., Khodjaoui, K., Gester, M., Danan, H., Stamps, R.L.: J. Magn. Magn. Mater. 165, 387 (1997)

    Article  ADS  Google Scholar 

  6. Ausanio, G., Iannotti, V., Lanotte, L., Carbucicchio, M., Rateo, M.: J. Magn. Magn. Mater. 226–230, 1740 (2001)

    Article  Google Scholar 

  7. Landis, S., Rodmacq, B., Dieny, B., Dal‘Zotto, B., Tedesco, S., Heitzmann, M.: J. Magn. Magn. Mater. 226–230, 1708 (2001)

    Article  Google Scholar 

  8. Shima, T., Takanashi, K., Takahashi, Y.K., Hono, K.: Appl. Phys. Lett. 81, 1050 (2002)

    Article  ADS  Google Scholar 

  9. Albertini, F., Carlotti, G., Casoli, F., Gubbiotti, G., Koo, H., Gomez, R.D.: J. Magn. Magn. Mater. 240, 526 (2002)

    Article  ADS  Google Scholar 

  10. Wedding, J.B., Li, M., Wang, G.C.: J. Magn. Magn. Mater. 204, 79 (1999)

    Article  ADS  Google Scholar 

  11. Loehndorf, M., Wadas, A., van den Berg, H.A.M., Wiesendanger, R.: Appl. Phys. Lett. 68, 3635 (1996)

    Article  ADS  Google Scholar 

  12. Lin, H.N., Chiou, Y.H., Chen, B.M., Shieh, H.P.D., Chang, C.R.: J. Appl. Phys. 83, 4997 (1998)

    Article  ADS  Google Scholar 

  13. Dreyer, M., Kleiber, M., Wadas, A., Wiesendanger, R.: Phys. Rev. B 59, 4273 (1999)

    Article  ADS  Google Scholar 

  14. Hehn, M., Padovani, S., Ounadjela, K., Bucher, J.P.: Phys. Rev. B 54, 3428 (1996)

    Article  ADS  Google Scholar 

  15. Desfeux, R., Costa, A.D., Prellier, W.: Surf. Sci. 81–92, 497 (2002)

    Google Scholar 

  16. Dumas-Bouchiat, F., Champeaux, C., Nagaraja, H., Rossignol, F., Lory, N., Catherinot, A., Blondy, P., Cros, D.: Thin Solid Films 453–454, 296 (2004)

    Article  Google Scholar 

  17. Perez, A., Mélinon, P., Paillard, V., Dupuis, V., Jensen, P., Hoareau, A., Perez, J.P., Tuaillon, J., Broyer, M., Vialle, J.L., Pellarin, M., Baguenard, B., Lerme, J.: Nanostruct. Mater. 6, 43 (1995)

    Article  Google Scholar 

  18. Wiesendager, R.: Curr. Opin. Solid State Mater. Sci. 4, 435 (1999)

    Article  ADS  Google Scholar 

  19. Kittel, C.: Phys. Rev. 70, 965 (1946)

    Article  ADS  Google Scholar 

  20. Muller, M.: J. Appl. Phys. 38, 2413 (1967)

    Article  ADS  Google Scholar 

  21. Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Phys. Rev. B 51, 11527 (1995)

    Article  ADS  Google Scholar 

  22. Dumas-Bouchiat, F., Nagaraja, H., Rossignol, F., Champeaux, C., Trolliard, Catherinot, A., Givord, D.: J. Appl. Phys. 100, 064304 (2006)

    Article  ADS  Google Scholar 

  23. Kim, J.V., Demand, M., Hehn, M., Ounadjela, K., Stamps, R.L.: Phys. Rev. B 62, 6467 (2002)

    Article  ADS  Google Scholar 

  24. Demand, M., Padovani, S., Hehn, M., Ounadjela, K., Bucher, J.P.: J. Magn. Magn. Mater. 247, 147 (2002)

    Article  ADS  Google Scholar 

  25. Suss, D., Schrefl, T., Fidler, J.: IEEE Trans. Magn. 36, 3282 (2000)

    Article  ADS  Google Scholar 

  26. Hehn, M., Cherifi-Khodjaoui, K., Ounadjela, K., Bucher, J.P., Arabski, J.: J. Magn. Magn. Mater. 165, 520 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. D. Givord, Laboratoire Louis Néel, UPR CNRS 5051, BP 166, F-38042 Grenoble Cedex, France for VSM characterization, CEFIPRA and DST-SERC, New Delhi for the project grant (No. SR/FTP/PS-33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Nagaraja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraja, H.S., Nagaraja, K.K., Rossignol, F. et al. Magnetic Domain Studies of Cobalt Nanostructures. J Supercond Nov Magn 25, 1901–1906 (2012). https://doi.org/10.1007/s10948-012-1508-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1508-2

Keywords

Navigation