Skip to main content
Log in

The Ti3SiC2 Max Phase Material for Q-Switched Pulse Generation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We report the feasibility of a Ti3SiC2 MAX phase material as absorber for Q-switched pulse generation in the 1550 nm region. The proposed saturable absorber (SA) is fabricated by embedding Ti3SiC2 particles into polyvinyl alcohol (PVA) thin film and incorporated into Erbium-doped fiber laser (EDFL) cavity via a sandwich-structured fiber-ferrule platform. The SA thin film exhibits a linear absorption of 3.8 dB and a modulation depth of 51% in the 1550 nm region. Using the Ti3SiC2/PVA thin filmbased SA within an EDFL ring cavity, a self-started and stable Q-switched pulse train is achieved at a wavelength of 1561.8 nm. It exhibits a maximum pulse energy of 100.7 nJ, a maximum repetition rate of 43.5 kHz, and a minimum pulse width of 5.6 μs at a pump power of 71.5 mW. This result unveils the potential of Ti3SiC2 MAX phase material for use as a low-cost and practical SA for pulse generation in the 1550 nm region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, W. Huang, C. Wang, et al., Laser Photonics Rev., 13, 1800313 (2019).

    Article  ADS  Google Scholar 

  2. N. F. Zulkipli, A. A. A. Jafry, R. Apsari, et al., Opt. Laser Technol., 127, 106163 (2020).

    Article  Google Scholar 

  3. N. Xu, S. Sun, X. Shang, et al., Opt. Mater. Express, 12, 166 (2022).

    Article  ADS  Google Scholar 

  4. F. Ilday, F. Wise, and T. Sosnowski, Opt. Lett., 27, 1531 (2002).

    Article  ADS  Google Scholar 

  5. S. M. Azooz, S. W. Harun, H. Ahmad, et al., Ukr. J. Phys. Opt., 16, 32 (2015).

    Article  Google Scholar 

  6. O. Okhotnikov, A. Grudinin, and M. Pessa, New J. Phys., 6, 177 (2004).

    Article  ADS  Google Scholar 

  7. S. Sun, F. Yang, Z. Sui, et al., J. Lumin., 250, 119064 (2022).

    Article  Google Scholar 

  8. D. Popa, Z. Sun, T. Hasan, et al., Appl. Phys. Lett., 98, 073106 (2011).

    Article  ADS  Google Scholar 

  9. M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, et al., Opt. Laser Technol., 65, 25 (2015).

    Article  ADS  Google Scholar 

  10. J. Lee, J. Lee, J. Koo, et al., Opt. Eng., 55, 076109 (2016).

    Article  ADS  Google Scholar 

  11. Y. Chen, G. Jiang, S. Chen, et al., Opt. Express, 23, 12823 (2015).

    Article  ADS  Google Scholar 

  12. M. T. Ahmad, A. R. Muhammad, H. Haris, et al., Optik, 182, 241 (2019).

    Article  ADS  Google Scholar 

  13. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, et al., Opt. Express, 23, 20051 (2015).

    Article  ADS  Google Scholar 

  14. B. Chen, X. Zhang, C. Guo, et al., Opt. Eng., 55, 081306 (2016).

    Article  ADS  Google Scholar 

  15. Z. Sun, Int. Mater. Rev., 56, 143 (2011).

    Article  Google Scholar 

  16. M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, Trends Chem., 1, 210 (2019).

    Article  Google Scholar 

  17. E. Hoffman, D. Vinson, R. Sindelar, et al., Nucl. Eng. Des., 244, 17 (2012).

    Article  Google Scholar 

  18. S. Jin, T. Su, Q. Hu, and A. Zhou, Mater. Res. Lett., 8, 158 (2020).

    Article  Google Scholar 

  19. L. Silvestroni, C. Melandri, and J. Gonzalez-Julian, J. Eur. Ceram. Soc., 41, 6064 (2021).

    Article  Google Scholar 

  20. J. Gonzalez-Julian, J. Am. Ceram. Soc., 104, 659 (2021).

    Article  Google Scholar 

  21. S. Perevislov, T. Sokolova, and V. Stolyarova, Mater. Chem. Phys., 267, 124625 (2021).

    Article  Google Scholar 

  22. K. Wu, B. Chen, X. Zhang, et al., Opt. Commun., 406, 214 (2018).

    Article  ADS  Google Scholar 

  23. J. Lee, S. Kwon, and J. H. Lee, Opt. Mater. Express, 9, 2057 (2019).

    Article  ADS  Google Scholar 

  24. N. A. Ghafar, N. F. Zulkipli, S. Omar, et al., J. Russ. Laser Res., 43, 702 (2022).

    Article  Google Scholar 

  25. A. M. Diblawe, B. A. Ahmad, K. Dimyati, et al., J. Russ. Laser Res., 44, 172 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moh Yasin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahib, M.A.A.B., Zakaria, R., Zulkipli, N.F. et al. The Ti3SiC2 Max Phase Material for Q-Switched Pulse Generation. J Russ Laser Res 44, 296–302 (2023). https://doi.org/10.1007/s10946-023-10134-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10134-w

Keywords

Navigation