Skip to main content
Log in

Phonon-Assisted Tunneling Current in a Double-Barrier Heterostructure with a Quantum Well

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Based on a quantum-mechanical model with a non-Hermitian Hamiltonian, we theoretically describe the tunneling current in a heterostructure containing a quantum well. We pay special attention to the effect of inelastic electron scattering by optical phonons in the tunneling process. We demonstrate that, in the case of a heterostructure of the composition In0.53Ga0.47As/AlAs/InP, the dependences of the tunneling current on the applied electric field reveals a peak associated with the resonant tunneling and a smaller postresonant peak induced by the LO-phonon-assisted tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Chang, E. E. Mendez, and C. Tejedor (Eds.), Resonant Tunneling in Semiconductors: Physics and Applications, Springer Science, New York (2012).

  2. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. B, 36, 7635 (1987).

  3. D. Y. Oberli, J. Shah, T. C. Damen, et al., Appl. Phys. Lett., 56, 1239 (1990).

    Article  ADS  Google Scholar 

  4. C. J. Goodings, H. Mizuta, and J. R. Cleaver, J. Appl. Phys., 75, 2291 (1994).

  5. M. Bao and K. L. Wang, IEEE Trans. Electron Devices, 53, 2564 (2006).

  6. V. S. Syzranov, O. A. Klimenko, A. S. Ermolov, et al., Bulletin Lebedev Phys. Inst., 40, 240 (2013).

    Article  ADS  Google Scholar 

  7. J. Gong, X. X. Liang, and S. L. Ban, J. Appl. Phys., 100, 023707 (2006).

    Article  ADS  Google Scholar 

  8. I. Prigogine and I. Stengers, Order out of Chaos: Man’s New Dialogue with Nature, Heinemann, London (1984).

  9. H. D. Zeh, The Physical Basis of the Direction of Time, Springer, Heidelberg (1989).

  10. A. Bohm, Phys. Rev. A, 60, 861 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Briggs and J. Rost, Found. Phys, 31, 693 (2001).

    Article  MathSciNet  Google Scholar 

  12. L. V. Keldysh, Sov. Phys, 20, 1018 (1965).

    MathSciNet  Google Scholar 

  13. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C, 4, 916 (1971).

    Article  ADS  Google Scholar 

  14. R. Mohsen, Quantum Theory Of Tunneling, World Scientific, Singapore (2013).

  15. A. K. Majee, A. Kommini, and Z. Aksamija, Ann. Phys. (N.Y.), 531, 1800510 (2019).

  16. G. Gamow, Z. Phys., 51, 204 (1928).

    Article  ADS  Google Scholar 

  17. L. Rosenfeld, Cosmology, Fusion and Other Matters: George Gamow Memorial Volume, Colorado Associated University Press, Boulder (1972).

  18. V. F. Weisskopf and E. P. Wigner, Z. Phys., 63, 54 (1930).

    Article  ADS  Google Scholar 

  19. P. Exner, Open Quantum Systems and Feynman Integrals, Springer, Dordrecht (1985).

  20. C. M. Bender, Rep. Prog. Phys., 70, 947 (2007).

    Article  ADS  Google Scholar 

  21. A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys., 7, 1191 (2010).

    Article  MathSciNet  Google Scholar 

  22. C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Phys. Rev. Lett., 98, 040403 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. N. Murzin, Phys. Lett. A, 381, 233 (2017).

    Article  Google Scholar 

  24. V. N. Murzin and L. Yu. Shchurova, J. Russ. Laser Res., 41, 597 (2020).

    Article  Google Scholar 

  25. N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press (2011).

  26. V. I. Man’ko (Ed.), Coherent States in Quantum Theory, Mir, Moscow (1972) [Russian translation].

  27. U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore (2008).

  28. S. A. Gurvitz, Phys. Rev. A, 38, 1747 (1988).

    Article  ADS  Google Scholar 

  29. S. A. Gurvitz and M. S. Marinov, Phys. Rev. A, 40, 2166 (1989).

    Article  ADS  Google Scholar 

  30. I. Bar-Joseph and S. A. Gurvitz, Phys. Rev. B, 44, 3332 (1991).

    Article  ADS  Google Scholar 

  31. J. W. Conley and G. D. Mahan, Phys. Rev., 161, 681 (1967).

    Article  ADS  Google Scholar 

  32. P. I. Arseev, Phys. Usp., 58, 1159 (2015).

    Article  ADS  Google Scholar 

  33. P. I. Arseyev and N. S. Maslova, JETP Lett., 82, 297 (2005).

    Article  ADS  Google Scholar 

  34. P. I. Arseyev and N. S. Maslova, JETP Lett., 84, 93 (2006).

    Article  Google Scholar 

  35. N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. B, 40, 11834 (1989).

    Article  ADS  Google Scholar 

  36. X. Q. Li, J. Y. Luo, Y. G. Yang, et al., Phys. Rev. B, 71, 205304 (2005).

    Article  ADS  Google Scholar 

  37. J. Faist, Quantum Cascade Lasers, Oxford University Press (2013).

  38. F. Capasso, K. Mohammed, and A. Y. Cho, IEEE J. Quantum Electron., QE-22, 1853 (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljudmila Yu. Shchurova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchurova, L.Y., Murzin, V.N. Phonon-Assisted Tunneling Current in a Double-Barrier Heterostructure with a Quantum Well. J Russ Laser Res 42, 632–642 (2021). https://doi.org/10.1007/s10946-021-10002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-10002-5

Keywords

Navigation