Skip to main content
Log in

The Effect of Internal Dynamics on the Motion of Cold Atoms in 2D Optical Lattices with Interfering Laser Beams

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We show theoretically and numerically that cold two-level atoms demonstrate unexpectedly complicated motion in an absolutely rigid two-dimensional optical lattice with interfering laser beams. The point-like atoms can move there in a chaotic way resembling motion of particles in a random potential. Chaos arises if the laser frequency is close to the atomic transition frequency where one should take into account the excitation of internal atomic states by the laser field. After loading cold atoms to the lattice, their induced electric dipole moments interact with a spatially inhomogeneous electric field of the two-dimensional standing laser wave. We find the range of the atom–field detuning where the synchronized (with the laser field) component of the atomic dipole moment changes in a random-like manner just after crossing the nodal lines of the standing wave where the electric field is zero. It, in turn, causes irregular changes in the momentum of atoms, leading eventually to chaotic walking of cold atoms in a deterministic potential. We show that adjusting the single control parameter, the atom–field detuning, it is possible to switch between regular and chaotic regimes of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Letokhov, Laser control of atoms and molecules, Oxford University Press, New York (2007).

    Google Scholar 

  2. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scientific, Singapore (1990).

  3. G. A. Askaryan, Sov. Phys. JETP, 15, 1088 (1962).

    Google Scholar 

  4. V. S. Letokhov, JETP Lett., 7, 272 (1968).

    ADS  Google Scholar 

  5. S. V. Prants and V. Yu. Sirotkin, Phys. Rev. A, 64, 033412 (2001).

  6. S. V. Prants and L. E. Kon’kov, Phys. Lett. A, 225, 33 (1997).

    Article  ADS  Google Scholar 

  7. S. V. Prants and L. E. Kon’kov, JETP Lett., 73, 1801 (2001).

    Article  Google Scholar 

  8. V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys., 96, 832 (2003).

    Article  ADS  Google Scholar 

  9. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 75, 063428 (2007).

  10. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).

  11. S. V. Prants, J. Exp. Theor. Phys., 109, 751 (2009).

    Article  ADS  Google Scholar 

  12. S. V. Prants, Phys. Scr., 92, 044002 (2017).

    Article  ADS  Google Scholar 

  13. A. Hemmerich, D. Schropp, Jr., and T. W. Hansch, Phys. Rev. A, 44, 1910 (1991).

    Article  ADS  Google Scholar 

  14. G. Grynberg and C. Robilliard, Phys. Rep., 355, 335 (2001).

    Article  ADS  Google Scholar 

  15. G. Raithel and N. Morrow, Adv. At. Mol. Opt. Phys., 53, 187 (2006).

    Article  ADS  Google Scholar 

  16. M. Greiner and S. Folling, Nature, 435, 736 (2008).

    Article  ADS  Google Scholar 

  17. S. V. Prants, J. Russ. Laser Res., 40, 213 (2019).

    Article  Google Scholar 

  18. A. Lichtenberg and M. Lieberman, Regular and Stochastic Motion, Springer, New York (1983).

    Book  Google Scholar 

  19. L. E. Kon’kov and S. V. Prants, JETP Lett., 65, 833 (1997).

    Article  ADS  Google Scholar 

  20. L. E. Kon’kov and S. V. Prants, J. Math. Phys., 37, 1204 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Prants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prants, S.V., Kon’kov, L.E. The Effect of Internal Dynamics on the Motion of Cold Atoms in 2D Optical Lattices with Interfering Laser Beams. J Russ Laser Res 40, 348–355 (2019). https://doi.org/10.1007/s10946-019-09810-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-019-09810-7

Keywords

Navigation