Skip to main content

Advertisement

Log in

Is there a Problem with our Hamiltonians for Quantum Nonlinear Optical Processes?

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The models we use, habitually, to describe quantum nonlinear optical processes have been remarkably successful, yet, with few exceptions, they each contain a mathematical flaw. We present this flaw, show how it can be fixed, and, in the process, suggest why we can continue to use our favored Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Stenholm circa (1986) private communication. His statement, if I remember correctly, was “Does it bother you that your Hamiltonian has a spectrum that is unbounded from below?” The very same question was posed soon afterwards, also, by K. Rzążewski after the presentation of a conference paper.

  2. W. H. Louisell, Radiation and Noise in Quantum Electronics, McGraw-Hill, New York (1964).

    Google Scholar 

  3. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, Kluwer, Dordrecht (1991).

    Book  Google Scholar 

  4. P. Meystre and D. F. Walls (Eds.), Nonclassical Effects in Quantum Optics, American Institute of Physics, New York (1991). This is a reprint collection of important early papers in quantum optics, many of them dealing with quantum nonlinear optics.

    Google Scholar 

  5. D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag, Berlin (1994).

    Book  Google Scholar 

  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).

  7. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).

  8. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics, Oxford University Press (1997).

    Google Scholar 

  9. H.-A. Bachor, A Guide to Experiments in Quantum Optics, Wiley-VCH, Weinheim (1998).

    MATH  Google Scholar 

  10. R. Loudon, The Quantum Theory of Light, 3rd ed., Oxford University Press (2000).

    Google Scholar 

  11. H. J. Carmichael, Statistical Methods in Quantum Optics, Springer, Berlin (2008), Vol. 2.

  12. R. W. Boyd, Nonlinear Optics, 3rd ed., Elsevier, Amsterdam (2008).

    Google Scholar 

  13. G. New, Introduction to Nonlinear Optics, Cambridge University Press (2011).

    Google Scholar 

  14. R. Bonifacio and G. Preparata, Lett. Nuovo Cimento, 1, 887 (1969).

    Article  Google Scholar 

  15. D. F. Walls and R. Barakat, Phys. Rev. A, 1, 446 (1970).

    Article  ADS  Google Scholar 

  16. S. M. Barnett and P. L. Knight, Opt. Acta, 31, 435 (1984); Erratum: 31 1203 (1984).

  17. A. Yariv, Quantum Electronics, 2nd ed., Wiley, New York (1975).

    Google Scholar 

  18. M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics, Wiley, New York (1986).

    Google Scholar 

  19. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press (1990).

  20. A. G. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, CA (1992).

    MATH  Google Scholar 

  21. P. Mandel P, Nonlinear Optics, Wiley-VCH, Weinheim (2010).

    Google Scholar 

  22. S. P. Krinitzky and D. T. Pegg, Phys. Rev. A, 33, 403 (1986).

    Article  ADS  Google Scholar 

  23. S. J. Buckle, S. M. Barnett, P. L. Knight, et al., J. Mod. Opt., 33, 1129 (1986).

    Google Scholar 

  24. B. W. Shore, The Theory of Coherent Atomic Excitation: Vol. 2, Multilevel Atoms and Incoherence, Wiley, New York (1990).

  25. Z. Ficek and S. Swain, Quantum Interference and Coherence, Springer, New York (2004).

    MATH  Google Scholar 

  26. S. Stenholm and K.-A. Suominen, Quantum Approach to Informatics, Wiley, Hoboken, NJ (2005).

    Book  Google Scholar 

  27. B. W. Shore, Manipulating Quantum Structures Using Laser Pulses, Cambridge University Press (2011).

  28. D. J. Klein, J. Chem. Phys., 61, 786 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  29. C. E. Soliverez, Phys. Rev. A, 24, 4 (1981).

    Article  ADS  Google Scholar 

  30. D. Bohm, Quantum Theory, Prentice-Hall, New York (1951); reprinted by Dover, New York (1989).

  31. R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics, Addison Wesley, Reading, MA (1960).

    MATH  Google Scholar 

  32. E. Merzbacher, Quantum Mechanics, 2nd ed., Wiley, New York (1970).

    MATH  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed., Butterworth Heinemann, Oxford (1977).

    MATH  Google Scholar 

  34. M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B., 4, 1102 (1987).

    Article  ADS  Google Scholar 

  35. M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B., 4, 1124 (1987).

    Article  ADS  Google Scholar 

  36. C. R. Gilson, S. M. Barnett, and S. Stenholm, J. Mod. Opt., 34, 949 (1987).

    Article  ADS  Google Scholar 

  37. S. M. Barnett, S. Stenholm, and D. T. Pegg, Opt. Commun., 73, 314 (1989).

    Article  ADS  Google Scholar 

  38. S. M. Barnett and S. Stenholm, J. Mod. Opt., 47, 2869 (2000).

    Article  ADS  Google Scholar 

  39. S. Franke-Arnold, E. Andersson, S. M. Barnett, and S. Stenholm, Phys. Rev. A, 63, 052301 (2001).

    Article  ADS  Google Scholar 

  40. S. M. Barnett and S. Stenholm, Phys. Rev. A, 64, 033808 (2001).

    Article  ADS  Google Scholar 

  41. J. Salo, S. M. Barnett, and S. Stenholm, Opt. Commun., 259, 772 (2006).

    Article  ADS  Google Scholar 

  42. S. Croke, S. M. Barnett, and S. Stenholm, Ann. Phys. (N. Y.), 323, 893 (2008).

    Article  ADS  Google Scholar 

  43. S. M. Barnett and S. Stenholm, “Causal interpretation of quantum mechanics: an alternative to Bohmian mechanics,” Unpublished note (2009).

  44. S. Stenholm, The Quest for Reality, Oxford University Press (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Barnett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnett, S.M. Is there a Problem with our Hamiltonians for Quantum Nonlinear Optical Processes?. J Russ Laser Res 39, 318–324 (2018). https://doi.org/10.1007/s10946-018-9725-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9725-1

Keywords

Navigation