Skip to main content
Log in

Magnetic and Desorption Cryogenic Calorimeters as Supersensitive Detectors of Far IR Radiation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this work, we estimate the potential of a cryogenic far IR radiation detector for registering the energy release by the amount of a substance desorbed upon its exposure to far IR quanta. The temperature invariability of the system at the first-order phase transition excludes the diffusion character of heat transfer processes, which contributes to the detector’s speed of operation and, according to our estimates, enables its use in pulsed location systems based on a CO2 TEA laser. As an example of another cryogenic detector, we consider an antiferromagnetic, where the speed of operation is provided by the resonance transfer of far IR quantum energy to the spin system, the sublevels of which are split by a strong (1,000 T) exchange field. The magnetic response arising in this case is registered by a quantum magnetometer based on the Josephson effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Strutt (Lord Rayleigh), Philos. Mag., 41, 447 (1871).

  2. V. V. Protopopov and N. D. Ustinov, Infrared Laser Radar System [in Russian], Voenizdat, Moscow (1987).

    Google Scholar 

  3. Orazio Svelto, Principles of Lasers, Plenum Press, New York (1976).

    Book  Google Scholar 

  4. V. E. Zuev, Transparency Atmosphere for Visible and Infrared Rays [in Russia], Soviet Radio, Moscow (1966).

    Google Scholar 

  5. Y. Lobanov, M. Shcherbatenko, M. Finkel, et al., IEEE Trans. Appl. Supercond., 25, 2300704 (2015).

    Article  Google Scholar 

  6. A. A. Zhigarev and G. T. Shamaeva, Cathode-Ray and Photoelectron Devices [in Russian], Vysshaya Shkola, Moscow (1982).

    Google Scholar 

  7. A. I. Golovashkin, A. N. Zherikhin, L. N. Zherikhina, et al., Bull. Lebedev Phys. Inst., 12, 25 (2004).

    Google Scholar 

  8. A. I. Golovashkin, A. N. Zherikhin, L. N.Zherikhina, et al, X-Ray, Synchr. Neutron Res., 10, 3 (2005).

    Google Scholar 

  9. A. I. Golovashkin, A. N. Zherikhin, L. N. Zherikhina, et al., Proc. MEPhI, 7, 20 (2008).

    Google Scholar 

  10. L. Z. Kriksunov, Fundamentals of IR Techniques: Reference Book [in Russian], Sovetskoe Radio, Moscow (1978).

    Google Scholar 

  11. I. B. Danilov, M. P. Malkov, A. B. Fradkov, and A. G. Zeldovich, Reference Book on the Physicotechnical Basics of Deep Freezing [in Russian], Governmental Energy Publishing House, Moscow/Leningrad (1963).

    Google Scholar 

  12. S. Brunauer, The Adsorption of Gases and Vapors. Physical Adsorption, Princeton, New Jersey (1945), Vol. 1.

  13. S. R. Bandler, C. Enss, G. Goldhaber, R. E. Lanou et al., J. Low Temp. Phys., 93, 715 (1993).

    Article  ADS  Google Scholar 

  14. A. I. Golovashkin, G. N. Izmaïlov, G. V. Kuleshova, et al., Quantum Electron., 36, 1168 (2006).

  15. A. I. Golovashkin, G. N. Izmaïlov, G. V. Kuleshova, et al., Eur. Phys. J. B, 58, 243 (2007).

  16. A. I. Golovashkin, L. N. Zherikhina, G. V. Kuleshova, et al., Meas. Tech., 51, 1178 (2008).

    Article  Google Scholar 

  17. A. I. Golovashkin, G. N. Izma¨ılov, V. A. Ryabov, et al., Am. J. Mod. Phys., 2, 208 (2013).

  18. A. I. Golovashkin, G. A. Gusev, L. N. Zherikhina, et al., Bull. Lebedev Phys. Inst., 34, 296 (2007).

    Article  ADS  Google Scholar 

  19. O. V. Lounasmaa, Experimental Principles and Methods below 1 K, Academic Press, New York (1974).

    Google Scholar 

  20. A. I. Golovashkin, V. G. Elenskij, and K. K. Likharev, Josephson Effect and Its Applications [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  21. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, Wiley, New York (1981).

    Google Scholar 

  22. J. Clarke and A. I. Braginski (Eds.), The SQUID Handbook, Wiley, New York (2006), Vols. 1 and 2

  23. E. K. Zavoiskii, J. Phys. (USSR), 9, 245 (1945).

    Google Scholar 

  24. J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, Cambridge (1972).

    Book  MATH  Google Scholar 

  25. A. I. Erohin, L. N. Zherihina, V. V. Priymachenko, and A. M. Tshovrebov, in: Proceedings of the 7th All-Russian Conference “Irreversible Processes in Nature and Technology” Bauman Higher Technical School, Moscow (2013), Pt. 3, p. 51.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Zherikhina.

Additional information

Manuscript submitted by the authors in English first on February 2, 2015 and in final form on December 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dresvyannikov, M.A., Izmailov, G.N., Ozolin, G.G. et al. Magnetic and Desorption Cryogenic Calorimeters as Supersensitive Detectors of Far IR Radiation. J Russ Laser Res 37, 244–249 (2016). https://doi.org/10.1007/s10946-016-9566-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9566-8

Keywords

Navigation