Skip to main content
Log in

Experimental and theoretical study of self-phase modulation in sbs compression of high-power laser pulses

  • Published:
Journal of Russian Laser Research Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study experimentally the behavior of the spectrum shape and Stokes frequency shift of stimulated Brillouin scattering (SRS)-compressed radiation within a broad range of incident-laser-pulse intensities from the threshold up to eight times the threshold values. We show that, at pulse compression of reflected radiation to subnanosecond durations (smaller than inverse spontaneous line widths), its spectrum monotonously shifts with increase in the exciting light intensity such that its Stokes shift decreases. At intensities increasing four times the threshold, the spectrum splits and acquires a twohumped shape, which is explained by the phase modulation near the SBS resonance. We construct an analytical model of self-phase modulation in SBS compression, describing the spectral splitting and chirping formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  2. G. P. Agraval, Nonlinear Fiber Optics, 4 ed., Elsevier (2007).

  3. C. B. Dane and L.A. Hackel, “High-Pulse-Energy Phase Conjugated Laser System,” in: A. Brignon and J.-P. Huignard (eds.), Phase Conjugate Laser Optics, Wiley (2004).

  4. V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett., 85, 1879 (2000).

    Article  ADS  Google Scholar 

  5. N. Basov and I. Zubarev, Appl. Phys. Lett., 20, 261 (1979).

    ADS  Google Scholar 

  6. A. I. Erokhin, V. I. Kovalev, and F. S. Fayzullov, Kvantovaya Elektron., 13, 1328 (1986).

    Google Scholar 

  7. G. W. Faris, M. J. Dyer, and A. P. Hickman, Opt. Lett., 17, 1049 (1992).

    Article  ADS  Google Scholar 

  8. D. T. Hon, Opt. Lett., 5, 516 (1980).

    Article  ADS  Google Scholar 

  9. V. A. Gorbunov, V. B. Ivanov, S. B. Papernyi, et al., Izv. Ross. Akad. Nauk, Ser. Fiz., 48, 1580 (1984).

    Google Scholar 

  10. S. Schiemann, W. Hogervorst, and W. Ubachs, IEEE J. Quantum Electron., 34, 407 (1998).

    Article  ADS  Google Scholar 

  11. V. Kmetik, H. Yoshida, H. Fujita, et al., Proc. SPIE, 3889, 818 (2000).

    Article  ADS  Google Scholar 

  12. E. M. Dianov, B. Ya. Zeldovich, A. Ya. Karasik, and A. N. Pilipetsky, Kvantovaya Elektron., 16, 1632 (1988).

    Google Scholar 

  13. C. B. Dane, W. A. Newman, and L. A. Hackel, IEEE J. Quantum Electron., 30, 1907 (1994).

    Article  ADS  Google Scholar 

  14. I. Velchev and W. Ubachs, Phys. Rev. A, 71, 043810 (2005).

    Article  ADS  Google Scholar 

  15. V. S. Starunov and I. L. Fabelinsky, Usp. Fiz. Nauk, 98, 441 (1969).

    Google Scholar 

  16. E. Picolle, C. Montes, C. Leycuras, et al., Phys. Rev. Lett., 66, 454 (1991).

    Google Scholar 

  17. C. Montes, A. Picozzi, and D. Bahloul, Phys. Rev. E, 55, 1092 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Smetanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erokhin, A.I., Smetanin, I.V. Experimental and theoretical study of self-phase modulation in sbs compression of high-power laser pulses. J Russ Laser Res 31, 452–461 (2010). https://doi.org/10.1007/s10946-010-9166-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-010-9166-y

Keywords

Navigation