Skip to main content
Log in

Carboxamide: based chemosensor grafted on SBA-15 nanostructure for selective detection of Hg2+ ion in an aqueous solution

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A new adeninecarboxamide ligand, N-(9 H-purin-6-yl) pyridine-2-carboxamide (H2pzac) has been synthesized by a green chemistry method using tetrabutylammunium bromide (TBAB) ionic liquid as an environmentally friendly reaction medium. The H2pzac ligand was anchored on modified SBA-15-Cl and utilized for detection of Hg2+ in aqueous solution. The as-constructed SBA-15@Hpzac sensor shows a high specific surface area as well as pore volume of 250 m2/g and 0.54 cm3/g, respectively. The fluorescence assessment indicated that the designed SBA-15@Hpzac sensor presented highly sensitive and selective behavior to Hg2+ ion over different cations including Zn2+, Ni2+, Co2+, Cu2+, Mn2+, Pb2+, Ba2+, Mg2+, Ca2+, Na+, Fe3+, Fe2+, Al3+, Cd2+ and K+. The fluorescence response of the SBA-15@Hpzac sensor for selective detection of Hg2+ ion is excellent with detection limit (LOD) of 1.07 × 10− 6 M. The application of the SBA-15@Hpzac sensor in determination of Hg2+ ions in two real water samples was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Badiei, B.V. Razavi, H. Goldooz et al., A novel fluorescent chemosensor assembled with 2,6-bis(2-benzimidazolyl)pyridine-functionalized nanoporous silica-type SBA-15 for recognition of Hg2+ ion in aqueous media. Int. J. Environ. Res. 12, 109–115 (2018). https://doi.org/10.1007/s41742-018-0075-1

    Article  CAS  Google Scholar 

  2. J. Wang, X. Zhang, H.B. Liu et al., Aggregation induced emission active fluorescent sensor for the sensitive detection of Hg2+ based on organic–inorganic hybrid mesoporous material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 227, 117585 (2020). https://doi.org/10.1016/j.saa.2019.117585

    Article  CAS  Google Scholar 

  3. E.F. Aboelfetoh, M.E. Zain Elabedien, E.Z.M. Ebeid, Effective treatment of industrial wastewater applying SBA-15 mesoporous silica modified with graphene oxide and hematite nanoparticles. J. Environ. Chem. Eng. 9, 104817 (2021). https://doi.org/10.1016/j.jece.2020.104817

    Article  CAS  Google Scholar 

  4. A. Shahat, S. Trupp, Sensitive, selective, and rapid method for optical recognition of ultra-traces level of hg(II), ag(I), au(III), and pd(II) in electronic wastes. Sens. Actuators B Chem. 245, 789–802 (2017). https://doi.org/10.1016/j.snb.2017.02.008

    Article  CAS  Google Scholar 

  5. A. Shahat, S.A. Elsalam, J.M. Herrero-Martínez et al., Optical recognition and removal of hg(II) using a new self-chemosensor based on a modified amino-functionalized Al-MOF. Sens. Actuators B Chem. 253, 164–172 (2017). https://doi.org/10.1016/j.snb.2017.06.125

    Article  CAS  Google Scholar 

  6. E.G. Pacyna, J.M. Pacyna, K. Sundseth et al., Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44, 2487–2499 (2010). https://doi.org/10.1016/j.atmosenv.2009.06.009

    Article  CAS  ADS  Google Scholar 

  7. W. Abd El-Fattah, E.S. Al-Farraj, N. Hamadi, Ben et al., Functionalized MOF as a sensitive spectroscopic probe for Hg2+, Co2+, and Al3+ ions detection in aqueous media. ACS Omega 7, 17483–17491 (2022). https://doi.org/10.1021/ACSOMEGA.2C02021/ASSET

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.A. El-Bindarya, A. Shahat, I.M. El-Deen et al., Dual colorimetric and fluorometric monitoring of Cd2+ and Hg2+ ions in water using functionalized Zrmetal–organic frameworks chemosensors. Appl. Organomet. Chem. 37, e7070 (2023). https://doi.org/10.1002/AOC.7070

    Article  CAS  Google Scholar 

  9. A. Radwan, I.M. El-Sewify, A. Shahat et al., Multiuse Al-MOF chemosensors for visual detection and removal of mercury ions in water and skin-whitening cosmetics. ACS Sustain. Chem. Eng. 8, 15097–15107 (2020). https://doi.org/10.1021/ACSSUSCHEMENG.0C03592/SUPPL_FILE/SC0C03592_SI_001.PDF

    Article  CAS  Google Scholar 

  10. X. He, J. Zhang, X. Liu et al., A novel BODIPY-based colorimetric and fluorometric dual-mode chemosensor for Hg2+ and Cu2+. Sens. Actuators B Chem. 192, 29–35 (2014). https://doi.org/10.1016/j.snb.2013.10.093

    Article  CAS  Google Scholar 

  11. F. Shemirani, S.D. Abkenar, A. Khatouni, Determination of trace amounts of lead and copper in water samples by flame atomic absorption spectrometry after cloud point extraction. Bull. Korean Chem. Soc. 25, 1133–1136 (2004). https://doi.org/10.5012/bkcs.2004.25.8.1133

    Article  CAS  Google Scholar 

  12. C. Detection, Determination of subnanomolar levels of iron. Society 63, 893–898 (1991)

    Google Scholar 

  13. P.L. Croot, M. Johansson, Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). Electroanalysis 12, 565–576 (2000)

    Article  CAS  Google Scholar 

  14. N. Lashgari, A. Badiei, G. Mohammadi Ziarani, A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72–) in water. J. Phys. Chem. Solids. 103, 238–248 (2017). https://doi.org/10.1016/j.jpcs.2016.11.021

    Article  CAS  ADS  Google Scholar 

  15. C. Wang, F. Shang, X. Yu et al., Synthesis of bifunctional catalysts Al-SBA-15-NH2 with high aluminum content and the catalytic application for different one-pot reactions. Appl. Surf. Sci. 258, 6846–6852 (2012). https://doi.org/10.1016/j.apsusc.2012.03.117

    Article  CAS  ADS  Google Scholar 

  16. A. Shakeri, R. Razavi, H. Salehi et al., Thin film nanocomposite forward osmosis membrane embedded with amine-functionalized ordered mesoporous silica. Appl. Surf. Sci. 481, 811–818 (2019). https://doi.org/10.1016/J.APSUSC.2019.03.040

    Article  CAS  ADS  Google Scholar 

  17. T. Das, D. Singha, A. Pal, M. Nandi, Mesoporous silica based recyclable probe for colorimetric detection and separation of ppb level Hg2+ from aqueous medium. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-55910-4

    Article  CAS  ADS  Google Scholar 

  18. S. Masoudnia, M.H. Juybari, R.Z. Mehrabian et al., Efficient dye removal from wastewater by functionalized macromolecule chitosan-SBA-15 nanofibers for biological approaches. Int. J. Biol. Macromol. 165, 118–130 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.158

    Article  CAS  PubMed  Google Scholar 

  19. S.W. Song, K. Hidajat, S. Kawi, Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. 21, 9568–9575 (2005). https://doi.org/10.1021/la051167e

    Article  CAS  PubMed  Google Scholar 

  20. X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 109, 1763–1769 (2005). https://doi.org/10.1021/jp045798d

    Article  CAS  PubMed  Google Scholar 

  21. L. Paul, S. Mukherjee, S. Chatterjee et al., Organically functionalized mesoporous SBA-15 type material bearing fluorescent sites for selective detection of HgII from aqueous medium. ACS Omega 4, 17857–17863 (2019). https://doi.org/10.1021/acsomega.9b02631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Meghdadi, M. Amirnasr, A. Amiri et al., Benign synthesis of N-(8-quinolyl)pyridine-2-carboxamide) ligand (Hbpq), and its Ni (II) and Cu (II) complexes. A fluorescent probe for direct detection of nitric oxide in acetonitrile solution based on Hbpq copper(II) acetate interaction. Comptes. Rendus Chim. 17, 477–483 (2014). https://doi.org/10.1016/j.crci.2013.10.003

    Article  CAS  Google Scholar 

  23. G. Mohammadi, F. Mohajer, A. Badiei, Synthesis of SBA-Pr-NHC as a selective fluorescent sensor for the detection of ag + ion in aqueous media. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 267, 120580 (2022). https://doi.org/10.1016/j.saa.2021.120580

    Article  CAS  Google Scholar 

  24. G. Mohammadi Ziarani, R. Moradi, F. Mohajer, A. Badiei, 2-Chloroquinoline-3-carbaldehyde modified nanoporous SBA-15-propylamine (SBA-Pr-NCQ) as a selective and sensitive ag + ion sensor in aqueous media. J. Phys. Chem. Solids. 161, 110399 (2022). https://doi.org/10.1016/j.jpcs.2021.110399

    Article  CAS  Google Scholar 

  25. L. Zhao, J. Li, D. Sui, Y. Wang, Highly selective fluorescence chemosensors based on functionalized SBA-15 for detection of ag + in aqueous media. Sens. Actuators B Chem. 242, 1043–1049 (2017). https://doi.org/10.1016/j.snb.2016.09.148

    Article  CAS  Google Scholar 

  26. G. Mohammadi Ziarani, S. Roshankar, F. Mohajer et al., The synthesis of SBA–Pr–N-Is–Bu–SO3H as a new Hg2+ fluorescent sensor. Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.110100

    Article  Google Scholar 

  27. X. Sun, W. Yu, J. Yan et al., Mesoporous silica-carbon composites fabricated by a universal strategy of hydrothermal carbonization: controllable synthesis and applications. RSC Adv. 8, 27207–27215 (2018). https://doi.org/10.1039/c8ra04641g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Z. Dong, Z. Dong, J. Ren et al., A quinoline group modified SBA-15 INHIBIT logic gate with [Cu2+ and Zn2+] or [Cu2+ and Cd2+] as inputs. Microporous Mesoporous Mater. 135, 170–177 (2010). https://doi.org/10.1016/j.micromeso.2010.07.006

    Article  CAS  Google Scholar 

  29. M. Jafari, A. Amiri, A. Badiei, A. Shayesteh, Fluorene-functionalized, dendrimer-modified SBA-15: detection of iron(III) and mercury (II) in aqueous media and logic gate studies. ChemistrySelect 4, 12559–12568 (2019). https://doi.org/10.1002/slct.201901974

    Article  CAS  Google Scholar 

  30. F. Zhang, Y. Yan, H. Yang et al., Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. J. Phys. Chem. B 109, 8723–8732 (2005). https://doi.org/10.1021/jp044632+

    Article  CAS  PubMed  Google Scholar 

  31. R.M. Melavanki, R.A. Kusanur, J.S. Kadadevaramath, M.V. Kulakarni, Quenching mechanisms of 5BAMC by aniline in different solvents using Stern–Volmer plots. J. Lumin. 129, 1298–1303 (2009). https://doi.org/10.1016/j.jlumin.2009.06.011

    Article  CAS  Google Scholar 

  32. V. Srinivasan, M.A. Jhonsi, N. Dhenadhayalan et al., Pyrene-based prospective biomaterial: in vitro bioimaging, protein binding studies and detection of bilirubin and Fe3+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 221, 117150 (2019). https://doi.org/10.1016/j.saa.2019.117150

    Article  CAS  Google Scholar 

  33. Z. Sun, G. Cui, H. Li et al., Multifunctional optical sensing probes based on organic-inorganic hybrid composites. J. Mater. Chem. B 4, 5194–5216 (2016). https://doi.org/10.1039/c6tb01468b

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Z. Sun, D. Guo, L. Zhang et al., Multifunctional fibrous silica composite with high optical sensing performance and effective removal ability toward Hg2+ ions. J. Mater. Chem. B 3, 3201–3210 (2015). https://doi.org/10.1039/c5tb00038f

    Article  CAS  PubMed  Google Scholar 

  35. J.Y. Choi, W. Kim, J. Yoon, Rhodamine based fluorescent chemosensors for Hg2+ and its biological application. Bull. Korean Chem. Soc. 33, 2359–2364 (2012). https://doi.org/10.5012/bkcs.2012.33.7.2359

    Article  CAS  Google Scholar 

  36. R. Martínez, A. Espinosa, A. Tárraga, P. Molina, A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(II) and hg(II). Tetrahedron. 66, 3662–3667 (2010). https://doi.org/10.1016/J.TET.2010.03.080

    Article  Google Scholar 

  37. J. Weng, Q. Mei, Q. Ling et al., A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. Tetrahedron 68, 3129–3134 (2012). https://doi.org/10.1016/J.TET.2011.12.071

    Article  CAS  Google Scholar 

  38. A. Caballero, R. Martínez, V. Lloveras et al., Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. J. Am. Chem. Soc. 127, 15666–15667 (2005). https://doi.org/10.1021/JA0545766/SUPPL_FILE/JA0545766SI20050907_042900.PDF

    Article  CAS  PubMed  Google Scholar 

  39. N. Lashgari, A. Badiei, G. Mohammadi Ziarani, F. Faridbod, Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water. Anal. Bioanal. Chem. 409, 3175–3185 (2017). https://doi.org/10.1007/s00216-017-0258-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the University of Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

PR wrote the main manuscript text.

Corresponding author

Correspondence to Ahmad Amiri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, P., Amiri, A. Carboxamide: based chemosensor grafted on SBA-15 nanostructure for selective detection of Hg2+ ion in an aqueous solution. J Porous Mater 31, 177–190 (2024). https://doi.org/10.1007/s10934-023-01502-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01502-7

Keywords

Navigation