Skip to main content
Log in

Improving the rate capability of microporous activated carbon-based supercapacitor electrodes using non-porous graphene oxide

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, high-rate-capability supercapacitor electrodes based on a green, sustainable, graphene oxide-assisted microporous activated carbon (AC) were developed by a facile method. Highly microporous ACs were produced from tea factory waste using different amounts of potassium carbonate (K2CO3). Non-porous GO sheets were prepared by anodic electrochemical exfoliation in a 0.1 M (NH4)2SO4 aqueous solution. The materials were characterized by N2 adsorption-desorption, particle size, XPS, Raman, and SEM techniques. The electrochemical performance of ACs was examined by using a 6 M KOH electrolyte with CV, GCD, and EIS methods. It was determined that the activated carbon sample (AC-IR1.5), prepared using a mass ratio of (1.0:1.5) of tea factory waste: K2CO3, exhibited the best electrode performance. These highly reversible best-performing AC-based electrodes prepared from AC-IR1.5 with the highest micropore volume fraction were physically mixed with GO in mass ratios, (AC-IR1.5: GO) of 90:10, 75:25, 60:40, and examined as the supercapacitor electrodes along with AC-based electrodes. The electrochemical characterization results showed that a significant enhancement in the rate capability was achieved by AC-IR1.5: GO electrodes compared to AC-based ones. The capacitance retention of AC-IR1.5: GO (75:25) was found to be at least twice as higher (84%) than that of AC-based electrodes (39%) at a high current density of 10 A g− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  2. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  3. Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M.S. Islam, L. Xunyu, D. Liming, A. Rose, H.W. Chun, Z. Han, Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 14(4), 1854–1896 (2021). https://doi.org/10.1039/D0EE03167D

    Article  CAS  Google Scholar 

  4. Y. Zhang, Y.P. Zhao, L.L. Qiu, J. Xiao, F.P. Wu, J.P. Cao, H.B. Yong, F.J. Liu, Insights into the KOH activation parameters in the preparation of corncob-based microporous carbon for high-performance supercapacitors. Diam. Relat. Mater. 129, 109331 (2022). https://doi.org/10.1016/j.diamond.2022.109331

    Article  CAS  Google Scholar 

  5. D. Dong, Y. Zhang, Y. Xiao, T. Wang, J. Wang, C.E. Romero, W.P. Pan, High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials. J. Colloid Interf Sci. 580, 77–87 (2020). https://doi.org/10.1016/j.jcis.2020.07.018

    Article  CAS  Google Scholar 

  6. S. Li, K. Han, P. Si, J. Li, C. Lu, High-performance activated carbons prepared by KOH activation of gulfweed for supercapacitors. Int. J. Electrochem. Sci. 13, 1728–1743 (2018). https://doi.org/10.20964/2018.02.08

    Article  CAS  Google Scholar 

  7. N. Tian, M. Gao, X.H. Liu, X. Liu, T. Yang, W. Xie, J. Wu, 2022 Activated carbon derived from walnut green peel as an electrode material for high-performance supercapacitors. Biomass Convers Biorefinery . https://doi.org/10.1007/s13399-021-02103-7

    Article  Google Scholar 

  8. S. Ahmed, A. Ahmed, M. Rafat, Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. J. Saudi Chem. Soc. 22, 993–1002 (2018). https://doi.org/10.1016/j.jscs.2018.03.002

    Article  CAS  Google Scholar 

  9. Q. Wei, Z. Chen, Y. Cheng, X. Wang, X. Yang, Z. Wang, Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators. Colloids Surf. A Physicochem Eng. Asp 574, 221–227 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.065

    Article  CAS  Google Scholar 

  10. J.I. Hayashi, A. Kazehaya, K. Muroyama, A.P. Watkinson, Preparation of activated carbon from lignin by chemical activation. Carbon 38(13), 1873–1878 (2000). https://doi.org/10.1016/S0008-6223(00)00027-0

    Article  CAS  Google Scholar 

  11. I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 357, 696–703 (2015). https://doi.org/10.1016/j.apsusc.2015.09.067

    Article  CAS  Google Scholar 

  12. I.I.G. Inal, Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 514, 145895 (2020). https://doi.org/10.1016/j.apsusc.2020.145895

    Article  CAS  Google Scholar 

  13. C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008). https://doi.org/10.1021/ja7106178

    Article  CAS  PubMed  Google Scholar 

  14. C. Arbizzani, S. Beninati, M. Lazzari, F. Soavi, M. Mastragostino, Electrode materials for ionic liquid-based supercapacitors. J. Power Sour 174, 648–652 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.162

    Article  CAS  Google Scholar 

  15. M. Lazzari, M. Mastragostino, F. Soavi, Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem. Commun. 9, 1567–1572 (2007). https://doi.org/10.1016/j.elecom.2007.02.021

    Article  CAS  Google Scholar 

  16. F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, M. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: study of methylene blue adsorption, stochastic isotherm and fractal kinetic. Ind. Crop Prod. 178, 114546 (2022). https://doi.org/10.1016/j.indcrop.2022.114546

    Article  CAS  Google Scholar 

  17. Y.F. Wu, Y.C. Hsiao, Y.J. Ou, S. Kubendhiran, C.Y. Huang, S. Yougbaré, L.Y. Lin, Synthesis of cigarette filter-derived activated carbon using various activating agents for flexible capacitive supercapacitors. J. Energy Storage 54, 105379 (2022). https://doi.org/10.1016/j.est.2022.105379

    Article  Google Scholar 

  18. H. Krishnamoorthy, R. Ramyea, A. Maruthu, K. Kandasamy, M. Michalska, S.K. Kandasamy, (2022) Synthesis methods of carbonaceous materials from different bio-wastes as electrodes for supercapacitor and its electrochemistry-A review,  Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2022.101187

    Article  Google Scholar 

  19. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 13(39), 17615–17624 (2011). https://doi.org/10.1039/C1CP21910C

    Article  CAS  PubMed  Google Scholar 

  20. S. Mitani, S.I. Lee, K. Saito, Y. Korai, I. Mochida, I. (2006). Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas. Electrochim. Acta. 51(25), 5487–5493 . https://doi.org/10.1016/j.electacta.2006.02.040

    Article  CAS  Google Scholar 

  21. J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, (2006). Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources. 158(1), 765–772 https://doi.org/10.1016/j.jpowsour.2005.09.008

    Article  CAS  Google Scholar 

  22. O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6), 1303–1310 (2005). https://doi.org/10.1016/j.carbon.2005.01.001

    Article  CAS  Google Scholar 

  23. B. Xu, F. Wu, Y. Su, G. Cao, S. Chen, Z. Zhou, Y. Yang, Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity. Electrochim. Acta 53(26), 7730–7735 (2008). https://doi.org/10.1016/j.electacta.2008.05.033

    Article  CAS  Google Scholar 

  24. B. Daffos, P.L. Taberna, Y. Gogotsi, P. Simon, Recent advances in understanding the capacitive storage in microporous carbons. Fuel Cells 10(5), 819–824 (2010). https://doi.org/10.1002/fuce.200900192

    Article  CAS  Google Scholar 

  25. K. Urita, C. Urita, K. Fujita, K. Horio, M. Yoshida, I. Moriguchi, The ideal porous structure of EDLC carbon electrodes with extremely high capacitance. Nanoscale 9(40), 15643–15649 (2017). https://doi.org/10.1039/C7NR05307J

    Article  CAS  PubMed  Google Scholar 

  26. Z. Li, D. Li, Z. Liu, B. Li, C. Ge, Y. Fang, Y. Mesoporous carbon microspheres with high capacitive performances for supercapacitors. Electrochim. Acta 158, 237–245 (2015). https://doi.org/10.1016/j.electacta.2015.01.189

    Article  CAS  Google Scholar 

  27. Y. Chen, X. Zhang, H. Zhang, X. Sun, D. Zhang, Y. Ma, High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Adv. 2(20), 7747 (2012). https://doi.org/10.1039/c2ra20667f

    Article  CAS  Google Scholar 

  28. X. He, J. Wang, G. Xu, M. Yu, M. Wu, Synthesis of microporous carbon/graphene composites for high-performance supercapacitors. Diam. Relat. Mater. 66, 119–125 (2016). https://doi.org/10.1016/j.diamond.2016.04.005

    Article  CAS  Google Scholar 

  29. I.L. Tsai, J. Cao, L. Le Fevre, B. Wang, R. Todd, R.A. Dryfe, A.J. Forsyth, Graphene-enhanced electrodes for scalable supercapacitors Electrochim. Acta 257, 372–379 (2017). https://doi.org/10.1016/j.electacta.2017.10.056

    Article  CAS  Google Scholar 

  30. T. Purkait, G. Singh, M. Singh, D. Kumar, R.S. Dey, Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 7(1), 1–14 (2017). https://doi.org/10.1038/s41598-017-15463-w

    Article  CAS  Google Scholar 

  31. I.I.G. Inal, Scalable activated carbon/graphene based supercapacitors with improved capacitanceretention at high current densities. Turk. J. Chem. 45(3), 927–941 (2021). https://doi.org/10.3906/kim-2012-39

    Article  CAS  Google Scholar 

  32. S.K. Kandasamy, K. Kandasamy, Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review. J. Inorg. Organomet. Polym. Mater. 28, 559–584 (2018). https://doi.org/10.1007/s10904-018-0779-x)

    Article  CAS  Google Scholar 

  33. I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, (2012) Preparation and characterisation of activated carbon from waste tea using K2CO3, Biomass and bioenergy. 37, 73–81. https://doi.org/10.1016/j.biombioe.2011.12.030

    Article  CAS  Google Scholar 

  34. I.I.G. Inal, Y. Gokce, Z. Aktas, (2016) Waste tea derived activated carbon/polyaniline composites as supercapacitor electrodes. 2016 IEEE Int. Conf. Renew. Energ. (ICRERA). Doi:  . https://doi.org/10.1109/icrera.2016.7884380

    Article  Google Scholar 

  35. P. Balakrishnan, I.I.G. Inal, E. Cooksey, A. Banford, Z. Aktas, S.M. Holmes, Enhanced performance based on a hybrid cathode backing layer using a biomass derived activated carbon framework for methanol fuel cells. Electrochim. Acta 251, 51–59 (2017). https://doi.org/10.1016/j.electacta.2017.08.068

    Article  CAS  Google Scholar 

  36. I.I.G. Inal, Y. Gökçe, E. Yağmur, Z. Aktaş, Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. J. Fac. Eng. Archıt Gaz. 35(3), 1243–1256 (2020). https://doi.org/10.17341/gazimmfd.425990

    Article  Google Scholar 

  37. K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014). https://doi.org/10.1021/ja5017156

    Article  CAS  PubMed  Google Scholar 

  38. S. Brunauer, P. Emmett, E. Teller, Adsorption of gases in Multimolecular Layers. J. Am. Chem. Soc. 60(2), 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  39. C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Z. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 258, 290–296 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.056

    Article  CAS  Google Scholar 

  40. F. Koyuncu, F. Güzel, I.I.G. İnal, High surface area and supermicroporous activated carbon from capsicum (capsicum annuum L.) industrial processing pulp via single-step KOH-catalyzed pyrolysis: production optimization, characterization and its some water pollutants removal and supercapacitor performance. Diam. Relat. Mater. 124, 108920 (2022). https://doi.org/10.1016/j.diamond.2022.108920

    Article  CAS  Google Scholar 

  41. R. Ali, Z. Aslam, R.A. Shawabkeh, A. Asghar, I.A. Hussein, BET, FTIR, and Raman characterizations of activated carbon from Wasteoil fly Ash. Turk. J. Chem. 44(2), 279–295 (2020). https://doi.org/10.3906/kim-1909-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, (2015)  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 . https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  43. A. Macías-García, D. Torrejón-Martín, M. Díaz-Díez, J.P. Carrasco-Amador, Study of the influence of particle size of activate carbon for the manufacture of electrodes for supercapacitors. J. Energy Storage 25, 100829 (2019). https://doi.org/10.1016/j.est.2019.100829

    Article  Google Scholar 

  44. Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.H. Kim, S.B. Park, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 116, 118–128 (2014). https://doi.org/10.1016/j.electacta.2013.11.040

    Article  CAS  Google Scholar 

  45. Y. He, Y. Zhang, X. Li, Z. Lv, X. Wang, Z. Liu, X. Huang, Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 282, 618–625 (2018). https://doi.org/10.1016/j.electacta.2018.06.103

    Article  CAS  Google Scholar 

  46. E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006). https://doi.org/10.1016/j.carbon.2006.05.022

    Article  CAS  Google Scholar 

  47. X.R. Li, Y.H. Jiang, P.Z. Wang, Y. Mo, Z.J. Li, R.J. Yu, Y.T. Du, X.R. Zhang, Y. Chen, Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors. New. Carbon Mater. 35(3), 232–243 (2020). https://doi.org/10.1016/S1872-5805(20)60487-5

    Article  CAS  Google Scholar 

  48. L.X. Li, L.I. Feng, The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New. Carbon Mater. 26(3), 224–228 (2011). https://doi.org/10.1016/s1872-5805(11)60078-4

    Article  Google Scholar 

  49. K. Fic, G. Lota, E. Frackowiak, Electrochemical properties of supercapacitors operating in aqueous electrolyte with surfactants. Electrochim. Acta 55(25), 7484–7488 (2010). https://doi.org/10.1016/j.electacta.2010.02.037

    Article  CAS  Google Scholar 

  50. Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors. J. Power Sources 225, 101–107 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.022

    Article  CAS  Google Scholar 

  51. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122(1), 194–206 (2017). https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

  52. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Reduction of Porous Carbon/Al Contact Resistance for an electric double-layer Capacitor (EDLC). Electrochim. Acta 92, 183–187 (2013). https://doi.org/10.1016/j.electacta.2012.12.092

    Article  CAS  Google Scholar 

  53. H.D. Yoo, J.H. Jang, J.H. Ryu, Y. Park, S.M. Oh, Impedance analysis of porous Carbon Electrodes to Predict Rate Capability of Electric double-layer Capacitors. J. Power Sources 267, 411–420 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.058

    Article  CAS  Google Scholar 

  54. W. Cao, F. Yang, Supercapacitors from high fructose corn syrup-derived activated carbons. Mater. Today Energy 9, 406–415 (2018). https://doi.org/10.1016/j.mtener.2018.07.002

    Article  Google Scholar 

  55. P. Li, C. Yang, C. Wu, Y. Wei, B. Jiang, Y. Jin, W. Wu, Bio-based carbon materials for high-performance supercapacitors. Nanomaterials 12(17), 2931 (2022). https://doi.org/10.3390/nano12172931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Y. Li, T. Shang, J. Gao, X. Jin, Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes. RSC Adv. 7(31), 19098–19105 (2017). https://doi.org/10.1039/C7RA00132K

    Article  CAS  Google Scholar 

  57. M. Li, J. Ding, J. Xue, Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. J. Mater. Chem. A 1(25), 7469 (2013). https://doi.org/10.1039/C3TA10890B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 218M562).

Author information

Authors and Affiliations

Authors

Contributions

The study and experiments were designed by I. Isil Gurten Inal, who also conducted the experiments and carried out the electrochemical analyses. Inal also authored the main text of the manuscript. Filiz Koyuncu collaborated with Inal in conducting the experiments and prepared Figs. 1 and 2, and 5, 6, 7, 8, 9, 10. Maria Perez-Page conducted the XPS and SEM analyses and provided interpretations of the data, and she also prepared Figs. 3 and 4. All authors contributed to the manuscript by reviewing it in detail.

Corresponding author

Correspondence to I. Isil Gurten Inal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurten Inal, I., Koyuncu, F. & Perez-Page, M. Improving the rate capability of microporous activated carbon-based supercapacitor electrodes using non-porous graphene oxide. J Porous Mater 30, 1775–1787 (2023). https://doi.org/10.1007/s10934-023-01459-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01459-7

Keywords

Navigation