Skip to main content
Log in

Fixed-bed column method for removing arsenate from groundwater using aluminium-modified kapok fibres

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Groundwater contamination with arsenic is a real problem, especially for people living in rural areas. This study prepared natural sorbents through an easy hydrothermal surface modification method using aluminium (Al-kapok) to remove As(V) from groundwater with a fixed-bed column approach. The characteristics of the natural adsorbent were investigated by performing specific surface area (BET) isotherm and nitrogen adsorption/desorption tests, capturing scanning electron microscopy (SEM) images, and performing energy-dispersive X-ray (EDS) spectroscopy and X-ray photoelectron spectroscopy (XPS). The specific surface area BET (1.655 m2/g) and the pore volume (0.023 cm3/g) values of Al-kapok were higher than the values of raw kapok, indicating the availability of more As(V) adsorption sites. The groundwater chemical parameters did not substantially affect the As(V) adsorption efficiency of the natural sorbent, even in the presence of competing ions such as sulfate (\({\text{SO}}_{{4}}^{{{2} - }}\)). An increase in the flow rate from 1 and 3 to 5 mL/min and an increase in the initial As(V) concentration from 50 to 100 µg/L and 150 µg/L caused a decrease in As(V) adsorption. However, increasing the sorbent dosage from 2 to 4 g led to an increase in the amount of As(V) adsorbed from 9 to 12.6 g. The adsorption reaction was endothermic, and the optimal pH for optimum As(V) removal was neutral. Thomas’s model fit the linear curve well and predicted the adsorption curve better than the model proposed by Bohart and Adams; the adsorption capacity was 3.37 mg/g at 25 °C. The new sorbents showed good regeneration and reusability after eight adsorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.A. Goodrich, B.W. Lykins, R.M. Clark, Drinking-water from agriculturally contaminated groundwater. J. Environ. Qual. 20(4), 707–717 (1991). https://doi.org/10.2134/jeq1991.00472425002000040001x

    Article  CAS  Google Scholar 

  2. J.M. Bian, J. Tang, L.S. Zhang, H.Y. Ma, J. Zhao, Arsenic distribution and geological factors in the western Jilin province, China. J. Geochem. Explor. 112, 347–356 (2012). https://doi.org/10.1016/j.gexplo.2011.10.003

    Article  CAS  Google Scholar 

  3. P.L. Smedley, D.G. Kinniburgh, Arsenic in groundwater and the environment. Essent. Med. Environ. (2012). https://doi.org/10.1007/978-94-007-4375-5_12

    Article  Google Scholar 

  4. D.G. Mazumder, U.B. Dasgupta, Chronic arsenic toxicity: studies in West Bengal, India. Kaohsiung J. Med. Sci. 27(9), 360–370 (2011). https://doi.org/10.1016/j.kjms.2011.05.003

    Article  CAS  Google Scholar 

  5. K.-Y. Chen, T.-K. Liu, Major factors controlling arsenic occurrence in the groundwater and sediments of the Chianan coastal plain, SW Taiwan. Terr. Atmos. Ocean. Sci. 18(5), 975–994 (2007). https://doi.org/10.3319/TAO.2007.18.5.975(TT)

    Article  Google Scholar 

  6. J.K. Gurung, H. Ishiga, M.S. Khadka, Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environ. Earth Sci. 49(1), 98–113 (2005). https://doi.org/10.1007/s00254-005-0063-6

    Article  CAS  Google Scholar 

  7. M. Berg, C. Stengel, T.K.T. Pham, H.V. Pham, M.L. Sampson, M. Leng, S. Samreth, D. Fredericks, Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Sci. Total Environ. 372(2–3), 413–425 (2007). https://doi.org/10.1016/j.scitotenv.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  8. J. Bian, J. Tang, L. Zhang, H. Ma, J. Zhao, Arsenic distribution and geological factors in the western Jilin province, China. J. Geochem. Explor. 112, 347–356 (2012). https://doi.org/10.1016/j.gexplo.2011.10.003

    Article  CAS  Google Scholar 

  9. K.M. McCarty, Y.-C. Chen, Q. Quamruzzaman, M. Rahman, G. Mahiuddin, Y.-M. Hsueh, L. Su, T. Smith, L. Ryan, D.C. Christiani, Arsenic methylation, GSTT1, GSTM1, GSTP1 polymorphisms, and skin lesions. Environ. Health Perspect. 115(3), 341–345 (2007). https://doi.org/10.1289/ehp.9152

    Article  CAS  PubMed  Google Scholar 

  10. T.G. Rossman, Mechanism of arsenic carcinogenesis: an integrated approach. Mutat. Res. 533(1–2), 37–65 (2003). https://doi.org/10.1016/j.mrfmmm.2003.07.009

    Article  CAS  PubMed  Google Scholar 

  11. J.C. States, S. Srivastava, Y. Chen, A. Barchowsky, Arsenic and cardiovascular disease. Toxicol. Sci. 107(2), 312–323 (2009). https://doi.org/10.1093/toxsci/kfn236

    Article  CAS  PubMed  Google Scholar 

  12. B. Vantroyen, J.F. Heilier, A. Meulemans, A. Michels, J.P. Buchet, S. Vanderschueren, V. Haufroid, M. Sabbe, Survival after a lethal dose of arsenic trioxide. J. Toxicol. Clin. Toxicol. 42(6), 889–895 (2004). https://doi.org/10.1081/clt-200035344

    Article  CAS  PubMed  Google Scholar 

  13. Jie Liu, H.V. Baoshan Zheng, Y. Aposhian, M.-L. Chen. Zhou, A. Zhang, M.P. Waalkes, Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ. Health Perspect. 110(2), 119–122 (2002). https://doi.org/10.1289/ehp.02110119

    Article  PubMed  PubMed Central  Google Scholar 

  14. M.M. Moore, K. Harrington-Brock, C.L. Doerr, Relative genotoxic potency of arsenic and its methylated metabolites. Mutat. Res. 386(3), 279–290 (1997). https://doi.org/10.1016/s1383-5742(97)00003-3

    Article  CAS  PubMed  Google Scholar 

  15. J. Calderón, M.E. Navarro, M.E. Jimenez-Capdeville, M.A. Santos-Diaz, A. Golden, I. Rodriguez-Leyva, V. Borja-Aburto, F. Díaz-Barriga, Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ. Res. 85(2), 69–76 (2001). https://doi.org/10.1006/enrs.2000.4106

    Article  CAS  PubMed  Google Scholar 

  16. N.R.C. (US), (2001) Arsenic in drinking water: 2001 update, in: arsenic in drinking water: 2001 update, Washington (DC)

  17. K.F.H. Yeo, C. Li, H. Zhang, J. Chen, W. Wang, Y. Dong, Arsenic removal from contaminated water using natural adsorbents: a review. Coatings 11(11), 1407 (2021). https://doi.org/10.3390/coatings11111407

    Article  CAS  Google Scholar 

  18. Z. Asif, Z. Chen, Removal of arsenic from drinking water using rice husk. Appl. Water Sci. 7, 1449–1458 (2015). https://doi.org/10.1007/s13201-015-0323-x

    Article  CAS  Google Scholar 

  19. Y. Wei, S. Wei, C. Liu, T. Chen, Y. Tang, J. Ma, K. Yin, S. Luo, Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res. 167, 115107 (2019). https://doi.org/10.1016/j.watres.2019.115107

    Article  CAS  PubMed  Google Scholar 

  20. S. Xu, M. Liang, L. Zhang, S. Tang, Z. Zhu, L. Zhu, Packed bed column investigation on As(V) adsorption using magnetic iron oxide/bagasse biomass carbon composite adsorbent. IOP Conf. Ser.: Mater. Sci. Eng. 490, 032032 (2019). https://doi.org/10.1088/1757-899X/490/3/032032

    Article  CAS  Google Scholar 

  21. H.M. Guo, D. Stuben, Z. Berner, Q.C. Yu, Characteristics of arsenic adsorption from aqueous solution: effect of arsenic species and natural adsorbents. Appl. Geochem. 24(4), 657–663 (2009). https://doi.org/10.1016/j.apgeochem.2008.12.017

    Article  CAS  Google Scholar 

  22. C.B. Tabelin, T. Igarashi, T. Arima, D. Sato, T. Tatsuhara, S. Tamoto, Characterization and evaluation of arsenic and boron adsorption onto natural geologic materials, and their application in the disposal of excavated altered rock. Geoderma 213, 163–172 (2014). https://doi.org/10.1016/j.geoderma.2013.07.037

    Article  CAS  Google Scholar 

  23. R. Brion-Roby, J. Gagnon, J.S. Deschenes, B. Chabot, Investigation of fixed bed adsorption column operation parameters using a chitosan material for treatment of arsenate contaminated water. J. Environ. Chem. Eng. 6(1), 505–511 (2018). https://doi.org/10.1016/j.jece.2017.12.032

    Article  CAS  Google Scholar 

  24. V. Lenoble, V. Deluchat, B. Serpaud, J.C. Bollinger, Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta 61(3), 267–276 (2003). https://doi.org/10.1016/S0039-9140(03)00274-1

    Article  CAS  PubMed  Google Scholar 

  25. M. Abid, N.K. Niazi, I. Bibi, A. Farooqi, Y.S. Ok, A. Kunhikrishnan, F. Ali, S. Ali, A.D. Igalavithana, M. Arshad, Arsenic(V) biosorption by charred orange peel in aqueous environments. Int. J. Phytorem. 18(5), 442–449 (2016). https://doi.org/10.1080/15226514.2015.1109604

    Article  CAS  Google Scholar 

  26. J.H. Zhou, J.P. He, G.X. Li, T. Wang, D. Sun, X.C. Ding, J.Q. Zhao, S.C. Wu, Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 114(17), 7611–7617 (2010). https://doi.org/10.1021/jp911030n

    Article  CAS  Google Scholar 

  27. H.M. Jin, S. Capareda, Z.Z. Chang, J. Gao, Y.D. Xu, J.Y. Zhang, Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour. Technol. 169, 622–629 (2014). https://doi.org/10.1016/j.biortech.2014.06.103

    Article  CAS  PubMed  Google Scholar 

  28. C.A. Martinson, K.J. Reddy, Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 336(2), 406–411 (2009). https://doi.org/10.1016/j.jcis.2009.04.075

    Article  CAS  PubMed  Google Scholar 

  29. J.M. Sanchez-Amaya, G. Blanco, F.J. Garcia-Garcia, M. Bethencourt, F.J. Botana, XPS and AES analyses of cerium conversion coatings generated on AA5083 by thermal activation. Surf. Coatings Technol. 213, 105–116 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.027

    Article  CAS  Google Scholar 

  30. M.R. Awual, M.A. Hossain, M.A. Shenashen, T. Yaita, S. Suzuki, A. Jyo, Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ. Sci. Pollut. Res. 20(1), 421–430 (2013). https://doi.org/10.1007/s11356-012-0936-7

    Article  CAS  Google Scholar 

  31. A.I. Zouboulis, I.A. Katsoyiannis, Arsenic removal using iron oxide loaded alginate beads. Ind. Eng. Chem. Res. 41(24), 6149–6155 (2002). https://doi.org/10.1021/ie0203835

    Article  CAS  Google Scholar 

  32. S.B. Debnath, Removal of ni(II) and Cr(VI) with titanium(IV) oxide nanoparticle agglomerates in fixed-bed columns. Ind. Eng. Chem. Res. 49(5), 2031–2039 (2010). https://doi.org/10.1021/ie9014827

    Article  CAS  Google Scholar 

  33. I. Kavianinia, P.G. Plieger, N.G. Kandile, D.R.K. Harding, Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solutions from copper (II). Carbohyd. Polym. 90(2), 875–886 (2012). https://doi.org/10.1016/j.carbpol.2012.06.014

    Article  CAS  Google Scholar 

  34. V. Sarin, T.S. Singh, K.K. Pant, Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark. Biores. Technol. 97(16), 1986–1993 (2006). https://doi.org/10.1016/j.biortech.2005.10.001

    Article  CAS  Google Scholar 

  35. P. Suksabye, P. Thiravetyan, W. Nakbanpote, Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith. J. Hazard. Mater. 160(1), 56–62 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.083

    Article  CAS  PubMed  Google Scholar 

  36. I.W.K. Ouedraogo, E. Pehlivan, H.T. Tran, Y.L. Bonzi-Coulibaly, D. Zachmann, M. Bahadir, Synthesis of iron oxyhydroxide-coated rice straw (IOC-RS) and its application in arsenic(V) removal from water. J. Water Health 13(3), 726–736 (2015). https://doi.org/10.2166/wh.2015.242

    Article  PubMed  Google Scholar 

  37. W. Song, X. Xu, X. Tan, Y. Wang, J.Y. Ling, B.Y. Gao, Q.Y. Yue, Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties. Carbohydr. Polym. 115, 432–438 (2015). https://doi.org/10.1016/j.carbpol.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  38. S.H. Chen, Q.Y. Yue, B.Y. Gao, Q. Li, X. Xu, K.F. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour. Technol. 113, 114–120 (2012). https://doi.org/10.1016/j.biortech.2011.11.110

    Article  CAS  PubMed  Google Scholar 

  39. D. Bulgariu, L. Bulgariu, Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresour. Technol. 129, 374–380 (2013). https://doi.org/10.1016/j.biortech.2012.10.142

    Article  CAS  PubMed  Google Scholar 

  40. K.H. Chu, Fixed bed sorption: setting the record straight on the Bohart-Adams and Thomas models. J. Hazard. Mater. 177(1–3), 1006–1012 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.019

    Article  CAS  PubMed  Google Scholar 

  41. H.C. Thomas, Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664–1666 (1944). https://doi.org/10.1021/ja01238a017

    Article  CAS  Google Scholar 

  42. R.P. Han, J.H. Zhang, W.H. Zou, H.J. Xiao, H. Shi, H.M. Liu, Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column. J. Hazard. Mater. 133(1–3), 262–268 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  43. S. Kundu, A.K. Gupta, Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (IOCC). J. Colloid Interface Sci. 290(1), 52–60 (2005). https://doi.org/10.1016/j.jcis.2005.04.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., Xi’an Jiaotong University (No. 201912131) and the Science Technology Project of Yulin (No. YF-2020-007).

Author information

Authors and Affiliations

Authors

Contributions

KFHYEO: Conceptualisation, formal analysis, laboratory investigation, writing—original draft, and methodology. YD: Laboratory investigation and validation. TX: Validation. YY: Validation. ZC: Validation. LH: Validation. NZ: Validation. FJM: Validation. KK: Validation. WW: Writing—review & editing, resources, supervision, and validation.

Corresponding author

Correspondence to Wendong Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2070 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

YEO, K.F.H., Dong, Y., Xue, T. et al. Fixed-bed column method for removing arsenate from groundwater using aluminium-modified kapok fibres. J Porous Mater 30, 1221–1232 (2023). https://doi.org/10.1007/s10934-022-01420-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01420-0

Keywords

Navigation