Skip to main content

Advertisement

Log in

SO42−-ion induced synthesis of 3D porous hydrangea-shaped anatase TiO2 as high performance anode material for lithium/sodium-ion batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

TiO2 materials are considered one of the promising candidates for lithium/sodium-ion batteries (L/SIBs) due to its excellent safety and abundant resources. However, the low ion diffusion coefficient becomes a bottleneck in restrict its development. In this work, three-dimensional (3D) porous hydrangea-shaped anatase TiO2 (ATO) was synthesized through the synergistic effect of de-alloying and SO42− induced chemical synthesis. During the chemical synthesis process, SO42− and TiO62− octahedra are bound by static electricity, as the spatial effect of SO42− can influence the octahedral arrangement in favor of precipitating anatase TiO2. In the SIBs, ATO as anode material provided an excellent capacity of 190 mAh g−1 after 100 cycles at a current density of 50 mA g−1. Electrochemical kinetic tests show that the pseudocapacitive behavior contributes to 86% of the capacity at a scan rate of 1 mV s−1, mainly due to the high specific surface area provided by its unique microstructure, and also shows excellent electrochemical performance in the LIBs tests. This study provides a novel strategy for the simple and large-scale production of TiO2 anode materials with high-performance L/SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin, J. Ming, Alshareef, electrolyte solvation structure design for sodium ion batteries. Adv. Sci. (Weinh) 9(22), e2201207 (2022). https://doi.org/10.1002/advs.202201207

    Article  CAS  PubMed  Google Scholar 

  2. Y. Qu, S. Zhu, X. Dong, H. Huang, Nitrogen-doped TiO2 nanotube anode enabling improvement of electronic conductivity for fast and long-term sodium storage. J. Alloy Compd. 889, 161612 (2021). https://doi.org/10.1016/j.jallcom.2021.161612

    Article  CAS  Google Scholar 

  3. Y. Zhou, S. Liu, F. Liu, T. Gao, K. Fu, A. Dou, M. Su, Y. Liu, Sphere-like TiO2/Si anode material with superior performance for lithium ion batteries. Ionics 26(11), 5349–5355 (2020). https://doi.org/10.1007/s11581-020-03730-2

    Article  CAS  Google Scholar 

  4. Z.-W. Zhang, X.-B. Zhong, Y.-H. Zhang, M.-Y. Tang, S.-X. Li, H.-H. Zhang, P.-F. Hu, J.-F. Liang, Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Met. 41(1), 21–28 (2021). https://doi.org/10.1007/s12598-021-01835-9

    Article  CAS  Google Scholar 

  5. X. Chen, Y. Zhang, The main problems and solutions in practical application of anode materials for sodium ion batteries and the latest research progress. Int. J. Energy Res. 45(7), 9753–9779 (2021). https://doi.org/10.1002/er.6500

    Article  CAS  Google Scholar 

  6. N. Jiang, Y. Hu, H. Jiang, C. Li, Hierarchical TiO2 microspheres with enlarged lattice spacing for rapid and ultrastable sodium storage. Chem. Eng. Sci. 231, 116298 (2021). https://doi.org/10.1016/j.ces.2020.116298

    Article  CAS  Google Scholar 

  7. F. Li, Q. Liu, J.H.J. Yang, J. Ma, Recent progresses on SnO2 anode materials for sodium storage. J. Phys. D-Appl. Phys. 53(35), 353001 (2020). https://doi.org/10.1088/1361-6463/ab8e79

    Article  CAS  Google Scholar 

  8. C. Cui, J. Xu, Y. Zhang, Z. Wei, M. Mao, X. Lian, S. Wang, C. Yang, X. Fan, J. Ma, C. Wang, Antimony nanorod encapsulated in cross-linked carbon for high-performance sodium ion battery anodes. Nano. Lett. 19(1), 538–544 (2019). https://doi.org/10.1021/acs.nanolett.8b04468

    Article  CAS  PubMed  Google Scholar 

  9. F. Na, L. Xiaoqiang, P. Xiong, Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage. J. Alloy Compd. 775, 1270–1276 (2018). https://doi.org/10.1016/j.jallcom.2018.10.143

    Article  CAS  Google Scholar 

  10. D. Yan, L. Pan, A new sodium storage mechanism of TiO2 for sodium ion batteries. Inorg. Chem. Front. 3(4), 464–468 (2016). https://doi.org/10.1039/c5qi00226e

    Article  CAS  Google Scholar 

  11. S. Liang, X. Wang, Y.-J. Cheng, Anatase titanium dioxide as rechargeable ion battery electrode—a chronological review. Energy Storage Mater. 45, 201–264 (2022). https://doi.org/10.1016/j.ensm.2021.11.023

    Article  Google Scholar 

  12. D. Yan, C. Yu, X. Zhang, J. Li, J. Li, T. Lu, Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries. Electrochim. Acta 254, 130–139 (2017). https://doi.org/10.1016/j.electacta.2017.09.120

    Article  CAS  Google Scholar 

  13. P.-P. Peng, Y.-R. Wu, X.-Z. Li, J.-H. Zhang, Y.-W. Li, P. Cui, T.-F. Yi, Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare Met. 40(11), 3049–3075 (2021). https://doi.org/10.1007/s12598-021-01742-z

    Article  CAS  Google Scholar 

  14. J.-Y. Hwang, H.-L. Du, B.-N. Yun, M.-G. Jeong, J.-S. Kim, H. Kim, Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 4(2), 494–501 (2019). https://doi.org/10.1021/acsenergylett.8b02510

    Article  CAS  Google Scholar 

  15. J. Lv, P. Chong, S. Huang, Y. Li, M. Wei, Dual-phase TiO2 hollow microspheres as a superior anode for sodium ion battery. J. Electroanal. Chem. 899, 115687 (2021). https://doi.org/10.1016/j.jelechem.2021.115687

    Article  CAS  Google Scholar 

  16. A. Di, Y. Wang, H.C. Zeng, TiO2/C tetragons with a double-side concave nanostructure and its high rate performance on Na-ion storage. Appl. Surf. Sci. 567, 150756 (2021). https://doi.org/10.1016/j.apsusc.2021.150756

    Article  CAS  Google Scholar 

  17. M. Zhang, C. Wang, H. Li, J. Wang, M. Li, X. Chen, Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochim. Acta 326, 134972 (2019). https://doi.org/10.1016/j.electacta.2019.134972

    Article  CAS  Google Scholar 

  18. Y. Wang, N. Li, C. Hou, B. He, J. Li, F. Dang, J. Wang, Y. Fan, Nanowires embedded porous TiO2@C nanocomposite anodes for enhanced stable lithium and sodium ion battery performance. Ceram. Int. 46(7), 9119–9128 (2020). https://doi.org/10.1016/j.ceramint.2019.12.161

    Article  CAS  Google Scholar 

  19. J. Yin, H. Yang, W. Kong, J. Man, Z. Zhou, W. Feng, J. Sun, Z. Wen, Highly compacted TiO2/C micospheres via in-situ surface-confined intergrowth with ultra-long life for reversible Na-ion storage. J. Colloid Interface Sci. 582, 526–534 (2021). https://doi.org/10.1016/j.jcis.2020.08.060

    Article  CAS  PubMed  Google Scholar 

  20. X. Li, X. Lu, H. Qi, K. Yu, Z. Zhang, Mesoporous Spherical TiO2 with outstanding photocatalysis under visible light. Chem. Select 3(18), 5025–5031 (2018). https://doi.org/10.1002/slct.201800256

    Article  CAS  Google Scholar 

  21. P. Sun, S. Wang, Y. Li, T. Zhang, D. Wang, B. Zhang, J. Yang, D. Xu, One-pot synthesis of nano titanium dioxide in supercritical water. Nanotechnol. Rev. 9(1), 410–417 (2020). https://doi.org/10.1515/ntrev-2020-0030

    Article  CAS  Google Scholar 

  22. E. Vassileva, L. Mihaylov, M. Spassova, T. Spassov, Porous metallic structures by de-alloying microcrystalline melt-spun ternary Zn70(Sn, Bi)30. J. Porous Mat. (2022). https://doi.org/10.1007/s10934-022-01361-8

    Article  Google Scholar 

  23. F. Chen, H. Wang, X. Chen, L. Zou, G. Chen, Q. Shen, L. Zhang, Fabrication and mechanical behavior of high-porosity bulk bimodal porous Cu via chemical de-alloying of Cu-Al alloys. J. Mater. Eng. Perform. 29(2), 1051–1059 (2020). https://doi.org/10.1007/s11665-020-04614-2

    Article  CAS  Google Scholar 

  24. A. Birrozzi, R. Belchi, J. Bouclé, D. Geiger, U. Kaiser, S. Passerini, Effect of the secondary Rutile phase in single-step synthesized carbon‐coated anatase TiO2 nanoparticles as lithium‐ion anode material. Energy Technol. 9(4), 2001067 (2021). https://doi.org/10.1002/ente.202001067

    Article  CAS  Google Scholar 

  25. Y. Li, R. Li, Y. Jin, W. Zhao, A novel TiO2 nanoparticle-decorated helical carbon nanofiber composite as an anode material for sodium-ion batteries. J. Electroanal. Chem. 901, 115765 (2021). https://doi.org/10.1016/j.jelechem.2021.115765

    Article  CAS  Google Scholar 

  26. X. Li, F. Zhang, B. Zhai, X. Wang, J. Zhao, Z. Wang, Facile synthesis of porous anatase TiO2 nanomaterials with the assistance of biomass resource for lithium ion batteries with high-rate performance. J. Phys. Chem. Solids 145, 109552 (2020). https://doi.org/10.1016/j.jpcs.2020.109552

    Article  CAS  Google Scholar 

  27. J. Gou, Z. Qiao, Z. Yu, S. Sun, C. Li, W.-J. Li, J. Wang, N. Wang, Architecting a 3D continuous C/CuVO3@Cu composite anode for lithium-ion storage. Surf. Innov. (2022). https://doi.org/10.1680/jsuin.21.00083

    Article  Google Scholar 

  28. J. Patra, S.-C. Wu, I.-C. Leu, C.-C. Yang, R.S. Dhaka, S. Okada, H.-L. Yeh, C.-M. Hsieh, B.K. Chang, J.-K. Chang, Hydrogenated anatase and rutile TiO2 for sodium-ion battery anodes. ACS Appl. Energ. Mater. 4(6), 5738–5746 (2021). https://doi.org/10.1021/acsaem.1c00571

    Article  CAS  Google Scholar 

  29. R. Marthi, P. Yang, Y.R. Smith, Role of stacking faults and hydroxyl groups on the lithium adsorption/desorption properties of layered H2TiO3. Mater. Today Adv. 14, 100237 (2022). https://doi.org/10.1016/j.mtadv.2022.100237

    Article  CAS  Google Scholar 

  30. D.L. Cocke, T.R. Hess, D.E. Mencer, D.G. Naugle, The surface reactivity of Ti Cu and Ti Al alloys and the ion chemistry of their oxide overlayers. Solid State Ion (1990). https://doi.org/10.1016/0167-2738(90)90478-A

    Article  Google Scholar 

  31. S. Zhu, G. Xie, X. Yang, Z. Cui, A thick hierarchical rutile TiO2 nanomaterial with multilayered structure. Mater. Res. Bull. 48(5), 1961–1966 (2013). https://doi.org/10.1016/j.materresbull.2013.01.049

    Article  CAS  Google Scholar 

  32. C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 26(15), 12841–12848 (2010). https://doi.org/10.1021/la100910u

    Article  CAS  PubMed  Google Scholar 

  33. J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible, lithium storage. J. Am. Chem. Soc. 132(17), 6124–6130 (2010). https://doi.org/10.1021/ja100102y

    Article  CAS  PubMed  Google Scholar 

  34. D. Yan, L. Pan, A new sodium storage mechanism of TiO2 for sodium ion batteries. Inorg. Chem. Front. 3(4), 464–468 (2016). https://doi.org/10.1039/c5qi00226e

    Article  CAS  Google Scholar 

  35. X. Gu, S. Wang, L. Wang, C. Wu, K. Xu, L. Zhao, Q. Liu, TiO2 nanotubes array on carbon cloth as a flexibility anode for sodium-ion batteries. J. Nanosci. Nanotechnol. 19(1), 226–230 (2019). https://doi.org/10.1166/jnn.2019.16459

    Article  CAS  PubMed  Google Scholar 

  36. T. Yao, H. Wang, Metal-organic framework derived vanadium-doped TiO2@carbon nanotablets for high-performance sodium storage. J. Colloid Interface Sci. 604, 188–197 (2021). https://doi.org/10.1016/j.jcis.2021.06.143

    Article  CAS  PubMed  Google Scholar 

  37. T. Li, N. Lun, Y.-X. Qi, C. Wei, Y.-K. Sun, H.-L. Zhu, J.-R. Liu, Y.-J. Bai, Enhancing the reversible capacity and rate performance of anatase TiO2 by combined coating and compositing with N-doped carbon. J. Power Sour. 273, 472–478 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.107

    Article  CAS  Google Scholar 

  38. M. Rasu, W. Liu, A Venture Synthesis and fabrication of BiVO4 as a highly stable Anode material for Na-Ion. Batteries Chem. Select 2(26), 8187–8195 (2017). https://doi.org/10.1002/slct.201701203

    Article  CAS  Google Scholar 

  39. M. Rasu, W. Liu, C.-H. Lin, M. Rudysh, M. Piasecki, Design of meso/macro porous 2D Mn-vanadate as potential novel anode materials for sodium-ion storage. J. Energy Storage (2019). https://doi.org/10.1016/j.est.2019.100915

    Article  Google Scholar 

  40. M. Rasu, J. Lu, I.V. BuiserMaggay, W. Liu, Modification of spinel-based CoV2O4 materials through mn substitution as a potential anode material for Li-ion storage. Surf. Coat. Technol. 389, 125602 (2020). https://doi.org/10.3390/polym12030555

    Article  CAS  Google Scholar 

  41. M. Rasu, I.V.B. Maggay, L.M.Z.D. Juan, M.T. Nguyen, T. Yonezaw, C.H. Lin, Y.-G. Lind, W.-R. Liu, Electrochemical exploration of calcination temperature effects of mesoporous zinc vanadate anode material for naion battery. Inorg. Chem. Front. 6(10), 2653–2659 (2019). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  42. M. Rasu, Y. Gu, W. Liu, Ce-MOF derived ceria: insights into the Na-ion storage mechanism as a high-rate performance anode material. Appl. Mater. Today 22, 100935 (2021). https://doi.org/10.1016/j.apmt.2021.100935

    Article  Google Scholar 

  43. C. Li, Z. Zhang, Y. Chen, X. Xu, M. Zhang, J. Kang, R. Liang, G. Chen, H. Lu, Y. Jiang, Architecting braided porous carbon fibers based on high-density catalytic crystal planes to achieve highly reversible sodium-ion storage. Adv. Sci. (Weinh) 9(18), e2104780 (2022). https://doi.org/10.1002/advs.202104780

    Article  CAS  PubMed  Google Scholar 

  44. X. Lu, F. Luo, Q. Tian, W. Zhang, Z. Sui, Anatase TiO2 nanowires intertangled with CNT for conductive additive-free lithium-ion battery anodes. J. Phys. Chem. Solids 153, 110037 (2021). https://doi.org/10.1016/j.jpcs.2021.110037

    Article  CAS  Google Scholar 

  45. M. Rasu, J.-S. Lu, W. Liu, Spinel rGO wrapped CoV2O4 nanocomposite as a novel anode material for sodium-ion batteries. Polymers 12(3), 555 (2020). https://doi.org/10.1016/j.surfcoat.2020.125602

    Article  CAS  Google Scholar 

  46. M. Rasu, P. Chiang, W. Liu, Copper-diphosphide composites: a key factor evaluation and capacity enhancement route for high-energy lithium-ion storage. ACS Appl. Energy Mater. 1(8), 3674–3683 (2018). https://doi.org/10.1021/acsaem.8b00470

    Article  CAS  Google Scholar 

  47. Y. Zhang, W. Hong, Y. Zhang, W. Xu, Z. Shi, X. Li, H. Hou, X. Ji, TiO2 nanosheets anchoring on carbon nanotubes for fast sodium storage. Electrochim. Acta 283, 1514–1524 (2018). https://doi.org/10.1016/j.electacta.2018.07.118

    Article  CAS  Google Scholar 

  48. S. Kim, M. De Bruyn, J.G. Alauzun, N. Louvain, N. Brun, D.J. Macquarrie, L. Stievano, P.H. Mutin, L. Monconduit, B. Boury, Dehydration of alginic acid cryogel by TiCl4 vapor: direct access to mesoporous TiO2@C nanocomposites and their performance in lithium-ion batteries. ChemSusChem 12(12), 2660–2670 (2019). https://doi.org/10.1002/cssc.201900781

    Article  CAS  PubMed  Google Scholar 

  49. M. Yao, L. Li, T. Yao, D. Wang, B. Liu, H. Wang, Embedding anatase TiO2 nanoparticles into holely carbon nanofibers for high-performance sodium/lithium ion batteries. J. Alloy Compd. 926, 166943 (2022). https://doi.org/10.1016/j.jallcom.2022.166943

    Article  CAS  Google Scholar 

  50. H. Zhao, X. Ding, N. Zhang, X. Chen, J. Xu, Improved electrochemical performance of silicon monoxide anode materials prompted by macroporous carbon. J. Porous Mat. 29(4), 1191–1198 (2022). https://doi.org/10.1007/s10934-022-01243-z

    Article  CAS  Google Scholar 

  51. J. Chen, G. Zou, H. Hou, Y. Zhang, Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. J. Mater. Chem. 4(32), 12591–12601 (2016). https://doi.org/10.1039/c6ta03505a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Numbers 52271011; 52102291; 51701142). We are also very grateful for the description of the Analytical Testing Center of Tiangong University.

Funding

The research was supported the National Nature Science Foundation of China (Grand Numbers 52271011; 52102291; 51701142).

Author information

Authors and Affiliations

Authors

Contributions

WW and ZZ conceived and designed the experiment. WW, ZZ and ZY analyzed the data and wrote the manuscript. GX, SL, ZP, YC, HY, MZ, YZ, WL, YJ and ZY conducted experiments or provided materials and put forward valuable suggestions. ZZ supervised the work, and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhijun Qiao, Zhenyang Yu or Zhijia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4501.1 kb)

Supplementary material 2 (XLSX 11.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Qiao, Z., Zhao, Y. et al. SO42−-ion induced synthesis of 3D porous hydrangea-shaped anatase TiO2 as high performance anode material for lithium/sodium-ion batteries. J Porous Mater 30, 1245–1253 (2023). https://doi.org/10.1007/s10934-022-01416-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01416-w

Keywords

Navigation