Skip to main content
Log in

Preferential CO2 adsorption over cadmium-based Porous Metal-organic Framework

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Novel preferential carbon-dioxide sorption was observed on a cadmium based mixed-linker metal-organic framework (MOF){[Cd(abdc)(azpy)](DMA)}n [where 4,4´-azopyridine = azpy and 2-amino-1,4-benzenedicarboxylic acid = H2abdc]. {[Cd(abdc)(azpy)](DMA)}n features an interpenetrated 3D networked structure consist of pendant Lewis basic −NH2 groups directed towards the pores. PLATON analysis shows that the solvent accessible void space of the MOF is ca. 26.6%. At 298 K, the desolvated MOF showed an uptake of carbon-dioxide of 8.33 wt% or 42.42 cc/g at 1 bar pressure which, upon cooling to 273 K, is increased to about 12.17 wt% or 62 cc/g at 1 bar pressure. In contrast, methane uptake capacities of the desolavated MOF were 0.127 wt% or 1.79 cm3/g and 1.34 wt% or 18.74 cm3/g at the adsorbate pressure of 1 bar at 298 K and 273 K, respectively. On the otherhand, hydrogen uptake capacity of the desolavated MOF reached to 0.31 wt% or 34.87 cm3/g at the adsorbate pressure of 1 bar at 77 K. Selectivity of carbon-dioxide with respect to methane at 273 K is calculated to be 5.4. The heat of adsorption for carbon-dioxide is calculated to be 38 kJmol− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Science 295, 469–472 (2002)

    CAS  PubMed  Google Scholar 

  2. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276–479 (1999)

    CAS  Google Scholar 

  3. M. Sadakiyo, T. Yamada, K. Kato, M. Takata, H. Kitagawa, Chem. Sci. 7, 1349–1356 (2016)

    CAS  PubMed  Google Scholar 

  4. G. Li, H. Kobayashi, J. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Nat. Mater. 13, 802–806 (2014)

    CAS  PubMed  Google Scholar 

  5. Y. Takashima, V. Martinez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nat. Commun. 2, 168–175 (2011)

    PubMed  Google Scholar 

  6. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330–1352 (2009)

    CAS  PubMed  Google Scholar 

  7. R. Debnath, R. Bhowmik, P. Ghosh, S. Biswas, S. Koner, New. J. Chem. 46, 8523–8533 (2022)

    CAS  Google Scholar 

  8. L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 38, 1248–1256 (2009)

    CAS  PubMed  Google Scholar 

  9. R. Sen, S. Bhunia, D. Mal, S. Koner, Y. Miyashita, K. Okamoto, Langmuir. 25, 13667–13672 (2009)

    CAS  PubMed  Google Scholar 

  10. D. Farrusseng, S. Aguado, C. Pinel, Angew Chem. Int. Ed. 48, 7502–7513 (2009)

    CAS  Google Scholar 

  11. M. Kurmoo, Chem. Soc. Rev. 38, 1353–1379 (2009)

    CAS  PubMed  Google Scholar 

  12. P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Feréy, J. Am. Chem. Soc. 130, 6774–6780 (2008)

    CAS  PubMed  Google Scholar 

  13. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Feréy, Angew Chem. Int. Ed. 45, 5974–5978 (2006)

    CAS  Google Scholar 

  14. M. Higuchi, D. Tanaka, S. Horike, H. Sakamoto, K. Nakamura, Y. Takashima, Y. Hijikata, N. Yanai, J. Kim, K. Kato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 131, 10336–10337 (2009)

    CAS  PubMed  Google Scholar 

  15. B.Q. Ma, K.L. Mulfort, J.T. Hupp, Inorg. Chem. 44, 4912–4914 (2005)

    CAS  PubMed  Google Scholar 

  16. J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 112, 869–932 (2012)

    CAS  PubMed  Google Scholar 

  17. D. Saha, T. Maity, S. Koner, Eur. J. Inorg. Chem. 6, 1053–1064 (2015)

    Google Scholar 

  18. R. Sen, R. Bera, A. Bhattacharjee, P. Gütlich, S. Ghosh, A.K. Mukherjee, S. Koner, Langmuir 24, 5970–5975 (2008)

    CAS  PubMed  Google Scholar 

  19. D. Saha, T. Maity, S. Das, S. Koner, Dalton Trans. 42, 13912–13922 (2013)

    CAS  PubMed  Google Scholar 

  20. D. Saha, R. Sen, T. Maity, S. Koner, Langmuir 29, 3140–3151 (2013)

    CAS  PubMed  Google Scholar 

  21. T. Maity, D. Saha, S. Das, S. Koner, Eur. J. Inorg. Chem. 30, 4914–4920 (2012)

    Google Scholar 

  22. D. Saha, S. Gayen, T. Maity, A. Frontera, J. Ortega-Castro, K. Leus, G. Wang, P. Van Der Voort, P. Brandão, S. Koner, New. J. Chem. 44, 1806–1816 (2020)

    CAS  Google Scholar 

  23. M.Z. Jacobson, Energy Environ. Sci. 2, 148 – 173 (2009)

  24. K.S. Lackner, S. Brennan, J.M. Matter, A.-H.Alissa Park, A. Wright. B. van der Zwaan, Proc. Natl. Acad. Sci. U. S. A. 109, 13156 –13162 (2012)

  25. S. Chaemchuen, N.A. Kabir, K. Zhou, F. Verpoort, Chem. Soc. Rev. 42, 9304–9332 (2013)

    CAS  PubMed  Google Scholar 

  26. J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Chem. Rev. 255, 1791–1823 (2011)

    CAS  Google Scholar 

  27. M.G. Plaza, C. Pevida, B. Arias, M.D. Casal, C.F. Martin, J. Fermoso, F. Rubiera, J.J. Pis, J. Environ. Eng. 135, 426–432 (2009)

    CAS  Google Scholar 

  28. IPCC, Special Report on Carbon Dioxide Capture and Storage (Cambridge University Press, 2005)

  29. B. Zheng, J. Bai, J. Duan, L. Wojtas, M.J. Zaworotko, J. Am. Chem. Soc. 133, 748 – 751 (2011)

  30. L. Du, Z. Lu, K. Zheng, J. Wang, X. Zheng, Y. Pan, X. You, J. Bai, J. Am. Chem. Soc. 135, 562–565 (2013)

    CAS  PubMed  Google Scholar 

  31. S. Kitagawa, R. Kitaura, S.-I. Noro, Angew Chem. Int. Ed. 43, 2334–2375 (2004)

    CAS  Google Scholar 

  32. J.F. Van Humbeck, T.M. McDonald, X. Jing, B.M. Wiers, G. Zhu, J.R. Long, J. Am. Chem. Soc. 136, 2432–2440 (2014)

    PubMed  Google Scholar 

  33. B. Chen, S. Ma, F. Zapata, F.R. Fronczek, E.B. Lobkovsky, H.-C. Zhou, Inorg. Chem. 46, 1233–1236 (2007)

    CAS  PubMed  Google Scholar 

  34. R. Vaidhyanathan, S.S. Iremonger, K.W. Dawson, G.K.H. Shimizu, Chem. Commun. 35, 5230–1532 (2009)

    Google Scholar 

  35. S.A. Sapchenko, D.N. Dybtsev, D.G. Samsonenko, R.V. Belosludov, V.R. Belosludov, Y. Kawazoe, M. Schröder, V.P. Fedin, Chem. Commun. 51, 13918–13921 (2015)

    CAS  Google Scholar 

  36. C.F. Leong, T.B. Faust, P. Turner, P.M. Usov, C.J. Kepert, R. Babarao, A.W. Thornton, D. M. D’Alessandro, Dalton Trans. 42, 9831–9839 (2013)

  37. J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477–1504 (2009)

    CAS  PubMed  Google Scholar 

  38. Z. Hulvey, D.A. Sava, J. Eckert, A.K. Cheetham, Inorg. Chem. 50, 403–405 (2011)

    CAS  PubMed  Google Scholar 

  39. G. Feréy, M. Latroche, C. Serre, F. Millange, T. Loiseau, A.P.G. Gan, Chem. Commun. 24, 2976–2977 (2003)

    Google Scholar 

  40. R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, P.G. Boyd, S. Alavi, T.K. Woo, Science. 330, 650–653 (2010)

    CAS  PubMed  Google Scholar 

  41. S. Chen, J. Zhang, T. Wu, P. Feng, X. Bu. J. Am. Chem. Soc. 131, 16027–16029 (2009)

    CAS  Google Scholar 

  42. A.L. Spek, J. Appl. Cryst. 36, 7–13( (2003), )

    CAS  Google Scholar 

  43. S.S. Dhankhar, N. Sharma, S. Kumar, T.J. Dhilip Kumar, C.M. Nagaraja, Chem. –Eur. J. 23, 16204–16212 (2017)

    Google Scholar 

  44. W.M. Bloch, R. Babarao, M.R. Hill, C.J. Doonan, C.J. Sumby, J. Am. Chem. Soc. 135, 10441–10448 (2013)

    CAS  PubMed  Google Scholar 

  45. J. Liu, G.-P. Yang, Y. Wu, Y. Deng, Q. Tan, W.-Y. Zhang, Y.-Y. Wang, Cryst. Growth Des. 17, 2059–2065 (2017)

  46. Y.-L. Huang, Y.-N. Gong, L. Jiang, T.-B. Lu, Chem. Commun. 49, 1753–1755 (2013)

    CAS  Google Scholar 

  47. H.-C. Kim, S. Huh, S.-J. Kim, Y. Kim, Sci. Rep. 7, 17185–17188 (2017)

    PubMed  PubMed Central  Google Scholar 

  48. S.B. Choi, H. Furukawa, H.J. Nam, D.-Y. Jung, Y.H. Jhon, A. Walton, D. Book, M. O’Keeffe, O.M. Yaghi, J. Kim, Angew Chem. Int. Ed. 51, 8791-8795 (2012)

    CAS  Google Scholar 

  49. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev. 112, 724–781 (2012)

    CAS  PubMed  Google Scholar 

  50. M.W. Bloch, R. Babarao, M.R. Hill, C.J. Doonan, C.J. Sumby, J. Am. Chem. Soc. 135, 10441–10448 (2013)

    CAS  PubMed  Google Scholar 

  51. A. Hazra, S. Bonakala, S.K. Reddy, S. Balasubramanian, T.K. Maji, Inorg. Chem. 52, 11358–11397 (2013)

    CAS  PubMed  Google Scholar 

  52. S. Parshamoni, J. Telangae, S. Konar, Dalton Trans. 44, 20926–20935 (2015)

    CAS  PubMed  Google Scholar 

  53. B. Ugale, S.S. Dhankhar, C.M. Nagaraja, Cryst. Growth Des. 17, 3295–3305 (2017)

    CAS  Google Scholar 

  54. J. Liu, G.-P. Yang, Y. Wu, Y. Deng, Q. Tan, W.-Y. Zhang, Y.-Y. Wang, Cryst. Growth Des. 17, 2059–2065 (2017)

    CAS  Google Scholar 

  55. H.-C. Kim, S. Huh, S.-J. Kim, Y. Kim, Sci. Rep. 7, 17185–17188 (2017)

    PubMed  PubMed Central  Google Scholar 

  56. Z.-J. Wang, L.-J. Han, X.-J. Gao, H.-G. Zheng, Inorg. Chem. 57, 5232–5239 (2018)

    CAS  PubMed  Google Scholar 

  57. W.-G. Jin, W. Chen, P.-H. Xu, X.-W. Lin, X.-C. Huang, G.-H. Chen, F. Lu, X.-M. Chen, Chem. –Eur. J. 23, 13058–13066 (2017)

    CAS  PubMed  Google Scholar 

  58. S. Nandi, R. Maity, D. Chakraborty, H. Ballav, R. Vaidhyanathan, Inorg. Chem. 57, 5267–5272 (2018)

    CAS  PubMed  Google Scholar 

  59. V.A. Bolotov, K.A. Kovalenko, D.G. Samsonenko, X. Han, X. Zhang, G.L. Smith, L.J. McCormick, S.J. Teat, S. Yang, M.J. Lennox, A. Henley, E. Besley, V.P. Fedin, D.N. Dybtsev, M. Schroder, Inorg. Chem. 57, 5074–5082 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Nature 495, 80–84 (2013)

    CAS  PubMed  Google Scholar 

  61. S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, J. Am. Chem. Soc. 130, 10870–10871 (2008)

    CAS  PubMed  Google Scholar 

  62. S. Noro, J. Mizutani, Y. Hijikata, R. Matsuda, H. Sato, S. Kitagawa, K. Sugimoto, Y. Inubushi, K. Kubo, T. Nakamura, Nat. Commun 6, 5851–5859 (2015)

    CAS  PubMed  Google Scholar 

  63. S. Noro, Y. Hijikata, M. Inukai, T. Fukushima, S. Horike, M. Higuchu, S. Kitagawa, T. Akutagawa, T. Nakamura, Inorg. Chem. 52, 280–285 (2013)

    CAS  PubMed  Google Scholar 

  64. Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Microporous Mesoporous Mater. 55, 217–230 (2002)

    CAS  Google Scholar 

  65. L.M. Robeson, J. Membr. Sci. 320, 390–400 (2008)

    CAS  Google Scholar 

  66. M.B. Mohamad, Y.Y. Fong, A. Shariff, Procedia Eng. 148, 621–629 (2016)

    CAS  Google Scholar 

  67. A. Kertik, L.H. Wee, M. Pfannmöller, S. Bals, J.A. Martens, I.F.J. Vankelecom, Energy Environ. Sci. 10, 2342–2351 (2017)

    CAS  Google Scholar 

  68. S. Zhou, O. Shekhah, A. Ramírez, P. Lyu, E. Abou-Hamad, J. Jia, J. Li, P.M. Bhatt, Z. Huang, H. Jiang, T. Jin, G. Maurin, J. Gascon, M. Eddaoudi, Nature 606, 706–712 (2022)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RD: Visualization, Investigation, Data acquisition, Data curation, Writing- Original draft preparation, Software. PG: Writing-Reviewing and Editing. SK: Conceptualization, Methodology, Supervision, Project administration, Funding Acquisition, Final Writing-Reviewing and Editing.

Corresponding author

Correspondence to Subratanath Koner.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, R., Ghosh, P. & Koner, S. Preferential CO2 adsorption over cadmium-based Porous Metal-organic Framework. J Porous Mater 30, 1163–1170 (2023). https://doi.org/10.1007/s10934-022-01409-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01409-9

Keywords

Navigation