Skip to main content
Log in

Evaluation of superplastic-foamed zirconia-based ceramics using foaming agent and a superplasticity facilitator derived from rice husk

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The applicability of rice husks to solid phase foaming ceramics was assessed. Through an atmospheric heat treatment on silicon carbide based mixture produced by the reduction heat treatment of rice husks, the residual carbon was mostly eliminated, giving a foaming agent composed of approximately SiC and SiO2. Solid-phase foamed porous ceramics was fabricated using this rice husk-derived foaming agent and the properties were compared with that fabricated from commercially available SiC. The sample fabricated from the rice husk-derived foaming agent showed favorable performances in terms of both strength and heat insulating properties. In comparison with the sample fabricated by adding commercially available silica in addition to commercial SiC, the strength became comparable, however, its heat insulating property was still inferior to that using rice husk-derived foaming agent. The increase in mechanical strength can be ascribed to the suppression of the grain growth due to the added silica. The formed silica phase existing at the grain boundaries would affect the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Gong, Y. Wang, X. Cheng, R. Zhang, H. Zhang, J. Porous Mater. 21, 15 (2014). https://doi.org/10.1007/s10934-013-9741-z

    Article  CAS  Google Scholar 

  2. Z. Živcová, E. Gregorová, W. Pabst, D.S. Smith, A. Michot, C. Poulier, J. Eur. Ceram. Soc. 29, 347 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.018

    Article  CAS  Google Scholar 

  3. J. Liu, Y. Li, Y. Li, S. Sang, S. Li, Ceram. Int. 42, 8221 (2016). https://doi.org/10.1016/j.ceramint.2016.02.032

    Article  CAS  Google Scholar 

  4. R.A. Dorey, J.A. Yeomans, P.A. Smith, J. Eur. Ceram. Soc. 22, 403 (2002). https://doi.org/10.1016/S0955-2219(01)00303-X

    Article  CAS  Google Scholar 

  5. A. Kishimoto, T. Higashiwada, H. Asaoka, H. Hayashi, Adv. Eng. Mater. 8, 708 (2006). https://doi.org/10.1002/adem.200600070

    Article  CAS  Google Scholar 

  6. T. Higashiwada, H. Asaoka, H. Hayashi, A. Kishimoto, J. Eur. Ceram. Soc. 27, 2217 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.08.008

    Article  CAS  Google Scholar 

  7. A. Kishimoto, M. Obata, K. Waku, H. Hayashi, Ceram. Int. 35, 1441 (2009). https://doi.org/10.1016/j.ceramint.2008.07.010

    Article  CAS  Google Scholar 

  8. M. Obata, H. Hayashi, A. Kishimoto, J. Alloys Compd. 471, L32 (2009). https://doi.org/10.1016/j.jallcom.2008.03.136

    Article  CAS  Google Scholar 

  9. T.I. Bhuiyan, H. Hayashi, A. Kishimoto, Ceram. Int. 37, 399 (2011). https://doi.org/10.1016/j.ceramint.2010.08.016

    Article  CAS  Google Scholar 

  10. A. Kishimoto, M. Okada, T. Teranishi, H. Hayashi, Mater. Sci. Eng. A 581, 98 (2013). https://doi.org/10.1016/j.msea.2013.05.084

    Article  CAS  Google Scholar 

  11. A. Kishimoto, M. Hanao, H. Hayashi, Adv. Eng. Mater. 11, 96 (2009). https://doi.org/10.1002/adem.200800259

    Article  CAS  Google Scholar 

  12. L. Sun, K. Gong, Ind. Eng. Chem. Res. 40, 5861 (2001). https://doi.org/10.1021/ie010284b

    Article  CAS  Google Scholar 

  13. C. Matsuoka, T. Teranishi, H. Hayashi, A. Kishimoto, J. Jpn. Soc. Powder Powder Metallurgy 65, 475 (2018). https://doi.org/10.2497/jjspm.65.475

    Article  CAS  Google Scholar 

  14. M.C. Martin, M.L. Mecartney, Solid State Ionics 161, 67 (2003). https://doi.org/10.1016/S0167-2738(03)00265-0

    Article  CAS  Google Scholar 

  15. M. Shirooyeh, R.P. Dillon, S.S. Sosa, P.H. Imamura, M.L. Mecartney, T.G. Langdon, J. Mater. Sci. 11, 3716 (2015). https://doi.org/10.1007/s10853-015-8932-1

    Article  CAS  Google Scholar 

  16. T. Takeuchi, I. Kondoh, N. Tamari, N. Balakrishnan, K. Nomura, H. Kageyama, Y. Takeda, J. Electrochem. Soc. 149, A455 (2002). https://doi.org/10.1149/1.1456915

    Article  CAS  Google Scholar 

  17. Ö Keleş, R.E. García, K.J. Bowman, Int. J. Fract. 187, 293 (2014). https://doi.org/10.1007/s10704-014-9934-8

    Article  Google Scholar 

  18. H.-S. Yang, G.-R. Bai, L.J. Thompson, J.A. Eastman, Acta Mater. 50, 2309 (2002). https://doi.org/10.1016/S1359-6454(02)00057-5

    Article  CAS  Google Scholar 

  19. A.M. Limarga, D.R. Clarke, Appl. Phys. Lett. 98, 211906 (2011). https://doi.org/10.1063/1.3593383

    Article  CAS  Google Scholar 

  20. K. Mizokami, A. Togo, I. Tanaka, Phys. Rev. B 97, 224306 (2018). https://doi.org/10.1103/PhysRevB.97.224306

    Article  CAS  Google Scholar 

  21. L. Pagliari, M. Dapiaggi, A. Pavese, F. Francescon, J. Eur. Ceram. Soc. 33, 3403 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JKA and its promotion funds from KEIRIN RACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kishimoto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, A., Tanaka, K. & Teranishi, T. Evaluation of superplastic-foamed zirconia-based ceramics using foaming agent and a superplasticity facilitator derived from rice husk. J Porous Mater 29, 153–159 (2022). https://doi.org/10.1007/s10934-021-01156-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01156-3

Keywords

Navigation