Skip to main content

Advertisement

Log in

Aqueous-based, high-density nanoporous carbon xerogels with high specific surface area for supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Electrode materials with high density for assembling supercapacitors with high volumetric capacitance are urgently needed. Herein, nanoporous carbon xerogels (NPCXs) are synthesized from aqueous-based resorcinol–formaldehyde xerogels which are dried at ambient condition without the organic solvent exchange. NPCXs with a high density (0.719 g cm−3) and high specific surface area (2082 m2 g−1) are prepared via the pyrolysis and CO2 activation. By increasing the number of carbon nano particles per unit area, more micropores can be formed followed by CO2 activation. The pore size is mainly distributed in the range of 0.6 and 3.0 nm, which plays a favorable role in ion transfer between electrode and electrolyte in supercapacitors. The as fabricated supercapacitor with NPCXs exhibits a high specific capacitance of 202 F cm−3 at 10 mV s−1, and a high energy density of 7014 Wh m−3. Moreover, the electrode also shows an excellent cycle stability with a capacitance retention of 95% after 5000 cycles at a current density of 10 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4269 (2004). https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  2. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  3. S. Yu, V.M.H. Ng, F. Wang, Z. Xiao, K. Zhou, J. Mater. Chem. A 6, 9332–9367 (2018). https://doi.org/10.1039/C8TA01683F

    Article  CAS  Google Scholar 

  4. K. Xia, Q. Gao, J. Jiang, J. Hu, Carbon 46, 1718–1726 (2008). https://doi.org/10.1016/j.carbon.2008.07.018

    Article  CAS  Google Scholar 

  5. C. Hu, C. Wang, Electrochem. Commun. 4, 554–559 (2002). https://doi.org/10.1016/S1388-2481(02)00371-5

    Article  CAS  Google Scholar 

  6. Z. Fan, J. Yan, W. Tong, L. Zhi, G. Ning, T. Li, W. Fei, Adv. Funct. Mater. 21, 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058

    Article  CAS  Google Scholar 

  7. C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, Electrochim. Acta 50, 4174–4181 (2005). https://doi.org/10.1016/j.electacta.2005.01.038

    Article  CAS  Google Scholar 

  8. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Int. J. Hydrogen Energy 34, 4889–4899 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005

    Article  CAS  Google Scholar 

  9. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  10. X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, H.J. Fan, Energy Environ. Sci. 8, 1559–1568 (2015). https://doi.org/10.1039/C5EE00339C

    Article  CAS  Google Scholar 

  11. T. Cheng, Y. Zhang, J. Yi, L. Yang, J. Zhang, W. Lai, W. Huang, J. Mater. Chem. A 4, 13754–13763 (2016). https://doi.org/10.1039/C6TA05319J

    Article  CAS  Google Scholar 

  12. M. Ko, S. Chae, S. Jeong, P. Oh, J. Cho, ACS Nano 8, 8591–8599 (2014). https://doi.org/10.1021/nn503294z

    Article  CAS  PubMed  Google Scholar 

  13. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/B813846J

    Article  CAS  PubMed  Google Scholar 

  14. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources 101, 109–116 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  CAS  Google Scholar 

  15. E. Frackowiak, F. Beguin, Carbon 39, 937–950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  16. A. Allwar, IOSR J. Appl. Chem. 2, 09–15 (2012). https://doi.org/10.9790/5736-0210915

    Article  CAS  Google Scholar 

  17. J. Shen, J. Hou, Y. Guo, H. Xue, G. Wu, B. Zhou, J. Sol-Gel Sci. Technol. 36, 131–136 (2005). https://doi.org/10.1007/s10971-005-5284-3

    Article  CAS  Google Scholar 

  18. D. Liu, J. Shen, N. Liu, H. Yang, A. Du, Electrochim. Acta 89, 571–576 (2013). https://doi.org/10.1016/j.electacta.2012.11.033

    Article  CAS  Google Scholar 

  19. J. Li, X. Wang, Q. Huang, S. Gamboa, P.J. Sebastian, J. Power Sources 158, 784–788 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.045

    Article  CAS  Google Scholar 

  20. R. Saliger, U. Fischer, C. Herta, J. Fricke, J. Non-Cryst. Solids 225, 81–85 (1998). https://doi.org/10.1016/S0022-3093(98)00104-5

    Article  CAS  Google Scholar 

  21. R.W. Pekala, F. Kong, Le Journal de Physique Colloques 24, 33–40 (1989). https://doi.org/10.1051/jphyscol:1989406

    Article  Google Scholar 

  22. R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, J Non-Cryst. Solids 225, 74–80 (1998). https://doi.org/10.1016/S0022-3093(98)00011-8

    Article  CAS  Google Scholar 

  23. T.F. Baumann, M.A. Worsley, T.Y. Han, J.H. Satcher, J. Non-Cryst. Solids 354, 3513–3515 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.03.006

    Article  CAS  Google Scholar 

  24. N. Liu, J. Shen, D. Liu, Microporous Mesoporous Mater. 167, 176–181 (2013). https://doi.org/10.1016/j.micromeso.2012.09.009

    Article  CAS  Google Scholar 

  25. W.S. Hwang, H.S. Hyun, J. Non-Cryst. Solids 347, 238–245 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.075

    Article  CAS  Google Scholar 

  26. U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, J. Porous Mater. 4, 281–285 (1997). https://doi.org/10.1023/A:1009629423578

    Article  CAS  Google Scholar 

  27. Y. Hanzawa, K. Kaneko, R.W. Pekala, M.S. Dresselhaus, Langmuir 12, 6167–6169 (1996). https://doi.org/10.1021/la960481t

    Article  CAS  Google Scholar 

  28. W. Li, G. Reichenauer, J. Fricke, Carbon 15, 2955–2959 (2002). https://doi.org/10.1016/S0008-6223(02)00243-9

    Article  Google Scholar 

  29. H. Proebstle, M. Wiener, J. Fricke, J. Porous Mater. 4, 213–222 (2003). https://doi.org/10.1023/B:JOPO.0000011381.74052.77

    Article  Google Scholar 

  30. Y. Tao, X. Xie, W. Lv, D. Tang, D. Kong, Z. Huang, H. Nishihara, T. Ishii, B. Li, D. Golberg, Sci. Rep.-UK 3, 2975 (2013). https://doi.org/10.1038/srep02975

    Article  Google Scholar 

  31. X. Chen, R. Xie, H. Li, F. Jaber, K.N. Hui, Sci. Rep. 10, 18956 (2020). https://doi.org/10.1038/s41598-020-75946-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Burke, J. Power Sources 91, 37–50 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  33. J. Shen, J. Wang, J. Zhai, Y. Guo, G. Wu, B. Zhou, X. Ni, J. Sol-Gel Sci. Technol. 31, 209–213 (2004). https://doi.org/10.1023/B:JSST.0000047989.39431.d5

    Article  CAS  Google Scholar 

  34. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Am. Chem. Soc. 62, 1723–1732 (1940). https://doi.org/10.1021/ja01864a025

    Article  CAS  Google Scholar 

  35. G.N. Zatsepina, J. Struct. Chem. 12, 894–898 (1972). https://doi.org/10.1007/BF00744151

    Article  Google Scholar 

  36. S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101–104 (2003). https://doi.org/10.1002/adma.200390020

    Article  CAS  Google Scholar 

  37. H. Jiang, J. Wang, S. Wu, Z. Yuan, Z. Hu, R. Wu, Q. Liu, Polym. Degrad. Stabil. 97, 1527–1533 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.04.016

    Article  CAS  Google Scholar 

  38. Y. Zhu, H. Hu, W. Li, X. Zhang, Carbon 45, 160–165 (2007). https://doi.org/10.1016/j.carbon.2006.07.010

    Article  CAS  Google Scholar 

  39. L. Wang, L. Zhuo, H. Cheng, C. Zhang, F. Zhao, J. Power Sources 283, 289–299 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.138

    Article  CAS  Google Scholar 

  40. M.J. Bleda-Martínez, J.A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Carbon 43, 2677–2684 (2005). https://doi.org/10.1016/j.carbon.2005.05.027

    Article  CAS  Google Scholar 

  41. E.G. Calvo, N. Rey-Raap, A. Arenillas, J.A. Menéndez, RSC Adv. 4, 32398–32404 (2014). https://doi.org/10.1039/c4ra04430d

    Article  CAS  Google Scholar 

  42. B. Zhao, P. Liu, Y. Jiang, D. Pan, W. Xu, J. Power Sources 198, 423–427 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.074

    Article  CAS  Google Scholar 

  43. J. Lang, X. Yan, X. Yuan, J. Yang, Q. Xue, J. Power Sources 23, 10472–10478 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.017

    Article  CAS  Google Scholar 

  44. D. Wu, X. Chen, S. Lu, Y. Liang, F. Xu, R. Fu, Microporous Mesoporous Mater. 131, 261–264 (2010). https://doi.org/10.1016/j.micromeso.2009.12.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2017YFA0204600).

Funding

This work was supported by National Key Research and Development Program of China (2017YFA0204600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Wang or Jun Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 935 kb)

Supplementary file2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, X., Wang, X. et al. Aqueous-based, high-density nanoporous carbon xerogels with high specific surface area for supercapacitors. J Porous Mater 29, 87–95 (2022). https://doi.org/10.1007/s10934-021-01149-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01149-2

Keywords

Navigation