Skip to main content

Advertisement

Log in

A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: preparation and characterization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This work was aimed to beneficiate biomass waste (lignin) to prepare a low-cost, ultralight, and high absorbent lignin-based aerogel via a facile and environmentally-friendly method that entailed blending of modified lignin with amine (LA) under high shear with polyvinyl alcohol (PVA) solution and followed by a freeze-drying process. Methyltriethoxy silicon (MTMS) was used as a silanization agent to improve the hydrophobicity of LA-PVA aerogel via chemical vapor deposition (CVD) reaction. The chemical and physical properties of the aerogel were then investigated using several characterization techniques such as Fourier transform infrared (FTIR) spectroscopy, elemental analysis, proton nuclear magnetic resonance (HNMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermogravimetric analysis. The hydrophobicity of the aerogels was satisfactory due to the formation of polysiloxane on the surface. The absorption capacity of oil and the organic solvent was varied between 2 and 12 times. The recycling experiments showed that after ten consecutive cycles, the separation efficiency was still above 90%, indicating a high recoverability. This was in addition to its other unique properties such as low density (0.1150 g/cm3), high porosity (88%), and satisfactory hydrophobicity (143°). Therefore, and based on the exceptional properties of the aerogel in terms of its reusability, oil/water separation efficiency, and mechanical properties render them ideal materials for application in oily wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.

Similar content being viewed by others

References

  1. H. Hu, Z. Zhao, Y. Gogotsi, J. Qiu, Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ. Sci. Technol. Lett. 1(3), 214–220 (2014). https://doi.org/10.1021/ez500021w

    Article  CAS  Google Scholar 

  2. A.T. Abdulhussein, G.K. Kannarpady, A.S. Biris, One-step synthesis of a steel-polymer wool for oil-water separation and absorption. NPJ Clean Water (2019). https://doi.org/10.1038/s41545-019-0034-1

    Article  Google Scholar 

  3. Z. Zhang, G. Sebe, D. Rentsch, T. Zimmermann, P. Tingaut, Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014). https://doi.org/10.1021/cm5004164

    Article  CAS  Google Scholar 

  4. H. Sun, A. Li, Z. Zhu, W. Liang, X. Zhao, P. La, W. Deng, Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem 6(6), 1057–1062 (2013). https://doi.org/10.1002/cssc.201200979

    Article  CAS  PubMed  Google Scholar 

  5. Q. Wen, J. Di, L. Jiang, J. Yu, R. Xu, Zeolite-coated mesh film for efficient oil–water separation. Chem. Sci. 4(2), 591–595 (2013). https://doi.org/10.1039/c2sc21772d

    Article  CAS  Google Scholar 

  6. M. Likon, M. Remskar, V. Ducman, F. Svegl, Populus seed fibers as a natural source for production of oil super absorbents. J Environ. Manage 114, 158–167 (2013). https://doi.org/10.1016/j.jenvman.2012.03.047

    Article  CAS  PubMed  Google Scholar 

  7. T. Zhang, L. Kong, Y. Dai, X. Yue, J. Rong, F. Qiu, J. Pan, Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO 2 nanowires. Chem. Eng. J. 309, 7–14 (2017). https://doi.org/10.1016/j.cej.2016.08.085

    Article  CAS  Google Scholar 

  8. H. Shi, D. Shi, L. Yin, Z. Yang, S. Luan, J. Gao, J. Zha, J. Yin, R.K. Li, Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6(22), 13748–13753 (2014). https://doi.org/10.1039/c4nr04360j

    Article  CAS  PubMed  Google Scholar 

  9. C. Nam, H. Li, G. Zhang, T.C.M. Chung, Petrogel: new hydrocarbon (oil) absorbent based on polyolefin polymers. Macromolecules 49(15), 5427–5437 (2016). https://doi.org/10.1021/acs.macromol.6b01244

    Article  CAS  Google Scholar 

  10. X.-M. Zhou, C.-Z. Chuai, Synthesis and characterization of a novel high-oil-absorbing resin. J. App. Polym. Sci. 115(6), 3321–3325 (2010). https://doi.org/10.1002/app.31384

    Article  CAS  Google Scholar 

  11. C. Chen, F. Li, Y. Zhang, B. Wang, Y. Fan, X. Wang, R. Sun, Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem. Eng. J. 350, 173–180 (2018). https://doi.org/10.1016/j.cej.2018.05.189

    Article  CAS  Google Scholar 

  12. H.P.S. Abdul Khalil, A.S. Adnan, E.B. Yahya, N.G. Olaiya, S. Safrida, M.S. Hossain, V. Balakrishnan, D.A. Gopakumar, C.K. Abdullah, A.A. Oyekanmi, D. Pasquini, A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers (Basel) (2020). https://doi.org/10.3390/polym12081759

    Article  PubMed Central  Google Scholar 

  13. Y. Wang, L. Zhu, F. Zhu, L. You, X. Shen, S. Li, Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J. Taiwan Instit. Chem. Eng. 78, 351–358 (2017). https://doi.org/10.1016/j.jtice.2017.06.037

    Article  CAS  Google Scholar 

  14. S. Kabiri, D.N.H. Tran, T. Altalhi, D. Losic, Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon 80, 523–533 (2014). https://doi.org/10.1016/j.carbon.2014.08.092

    Article  CAS  Google Scholar 

  15. H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013). https://doi.org/10.1002/adma.201204576

    Article  CAS  PubMed  Google Scholar 

  16. H. Yagoub, L. Zhu, M. Shibraen, A.A. Altam, D.M.D. Babiker, S. Liang, Y. Jin, S. Yang, Complex aerogels generated from nano-polysaccharides and its derivatives for oil-water separation. Polymers (Basel) (2019). https://doi.org/10.3390/polym11101593

    Article  Google Scholar 

  17. Y. Zhang, M. Yin, L. Li, B. Fan, Y. Liu, R. Li, X. Ren, T.-S. Huang, I.S. Kim, Construction of aerogels based on nanocrystalline cellulose and chitosan for high efficient oil/water separation and water disinfection. Carbohydr. Polym. 243, 116461 (2020). https://doi.org/10.1016/j.carbpol.2020.116461

    Article  CAS  PubMed  Google Scholar 

  18. C. Jiang, H. He, H. Jiang, L. Ma, D.M. Jia, Nano-lignin filled natural rubber composites: preparation and characterization. Exp. Polym. Lett. 7(5), 480–493 (2013). https://doi.org/10.3144/expresspolymlett.2013.44

    Article  CAS  Google Scholar 

  19. R. Datta, A. Kelkar, D. Baraniya, A. Molaei, A. Moulick, R. Meena, P. Formanek, Enzymatic degradation of lignin in soil: a review. Sustainability (2017). https://doi.org/10.3390/su9071163

    Article  Google Scholar 

  20. C. Xu, M. Nasrollahzadeh, M. Selva, Z. Issaabadi, R. Luque, Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 48(18), 4791–4822 (2019). https://doi.org/10.1039/C8CS00543E

    Article  CAS  PubMed  Google Scholar 

  21. V.K. Garlapati, A.K. Chandel, S.P.J. Kumar, S. Sharma, S. Sevda, A.P. Ingle, D. Pant, Circular economy aspects of lignin: towards a lignocellulose biorefinery. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2020.109977

    Article  Google Scholar 

  22. Y. Ge, D. Xiao, Z. Li, X. Cui, Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. J. Mater. Chem. A 2(7), 2136–2145 (2014). https://doi.org/10.1039/c3ta14333c

    Article  CAS  Google Scholar 

  23. O. Gordobil, R. Herrera, Llano-Ponte, J. Labidi, Esterified organosolv lignin as hydrophobic agent for use on wood products. Prog. Org. Coat. 103, 143–151 (2017). https://doi.org/10.1016/j.porgcoat.2016.10.030

    Article  CAS  Google Scholar 

  24. J. Zhang, Y. Chen, P. Sewell, M.A. Brook, Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem. 17(3), 1811–1819 (2015). https://doi.org/10.1039/c4gc02409e

    Article  CAS  Google Scholar 

  25. J. Zhang, Y. Ge, L. Qin, W. Huang, Z. Li, Synthesis of a lignin-based surfactant through amination, sulfonation, and acylation. J. Dispers. Sci. Technol. 39(8), 1140–1143 (2017). https://doi.org/10.1080/01932691.2017.1385478

    Article  CAS  Google Scholar 

  26. L.I. Grishechko, G. Amaral-Labat, A. Szczurek, V. Fierro, B.N. Kuznetsov, A. Pizzi, A. Celzard, New tannin–lignin aerogels. Indus. Crops Prod. 41, 347–355 (2013). https://doi.org/10.1016/j.indcrop.2012.04.052

    Article  CAS  Google Scholar 

  27. Z. Zeng, X.Y.D. Ma, Y. Zhang, Z. Wang, B.F. Ng, M.P. Wan, X. Lu, Robust lignin-based aerogel filters: high-efficiency capture of ultrafine airborne particulates and the mechanism. ACS Sustain. Chem. Eng. 7(7), 6959–6968 (2019). https://doi.org/10.1021/acssuschemeng.8b06567

    Article  CAS  Google Scholar 

  28. B.S. Yang, K.-Y. Kang, M.-J. Jeong, Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor. J. Korean Phys. Soc. 71(8), 478–482 (2017). https://doi.org/10.3938/jkps.71.478

    Article  CAS  Google Scholar 

  29. W. Sangchoom, R. Mokaya, Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage. ACS Sustain. Chem. Eng. 3(7), 1658–1667 (2015). https://doi.org/10.1021/acssuschemeng.5b00351

    Article  CAS  Google Scholar 

  30. N. Ghavidel, P. Fatehi, Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Adv. 9(31), 17639–17652 (2019). https://doi.org/10.1039/C9RA02526J

    Article  CAS  Google Scholar 

  31. Y. Yang, H. Yi, C. Wang, Oil absorbents based on melamine/lignin by a dip adsorbing method. ACS Sustain. Chem. Eng. 3(12), 3012–3018 (2015). https://doi.org/10.1021/acssuschemeng.5b01187

    Article  CAS  Google Scholar 

  32. C. Wang, Y. Xiong, B. Fan, Q. Yao, H. Wang, C. Jin, Q. Sun, Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance. Sound-absorption and thermal Insulation. Sci. Rep. 6(1), 32383 (2016). https://doi.org/10.1038/srep32383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Alassod, S.R. Islam, A. Farooq, G. Xu, Fabrication of polypropylene/lignin blend sponges via thermally induced phase separation for the removal of oil from contaminated water. SN Appl. Sci. 2(9), 1569 (2020). https://doi.org/10.1007/s42452-020-03372-z

    Article  CAS  Google Scholar 

  34. A. Alassod, M. Gibril, S.R. Islam, W. Huang, G. Xu, Polypropylene/lignin blend monoliths used as sorbent in oil spill cleanup. Heliyon 6(9), e04591 (2020). https://doi.org/10.1016/j.heliyon.2020.e04591

    Article  PubMed  PubMed Central  Google Scholar 

  35. Y. Meng, T. Liu, S. Yu, Y. Cheng, J. Lu, H. Wang, A lignin-based carbon aerogel enhanced by graphene oxide and application in oil/water separation. Fuel 278, 118376 (2020). https://doi.org/10.1016/j.fuel.2020.118376

    Article  CAS  Google Scholar 

  36. A. Abraham, P.A. Soloman, V.O. Rejini, Preparation of chitosan-polyvinyl alcohol blends and studies on thermal and mechanical properties. Proc. Technol. 24, 741–748 (2016). https://doi.org/10.1016/j.protcy.2016.05.206

    Article  Google Scholar 

  37. J. Zhu, S. Lv, T. Yang, T. Huang, H. Yu, Q. Zhang, M. Zhu, Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv. Sustain. Syst. 4(4), 1900141 (2020). https://doi.org/10.1002/adsu.201900141

    Article  CAS  Google Scholar 

  38. H. Zhang, J. Zhang, The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application. J. Colloid Interface Sci. 569, 254–266 (2020). https://doi.org/10.1016/j.jcis.2020.02.053

    Article  CAS  PubMed  Google Scholar 

  39. H.M. Kim, Y.J. Noh, J. Yu, S.Y. Kim, J.R. Youn, Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution. Comp. Part A: Appl. Sci. Manuf. 75, 39–45 (2015). https://doi.org/10.1016/j.compositesa.2015.04.014

    Article  CAS  Google Scholar 

  40. C. Simón-Herrero, L. Gómez, A. Romero, J.L. Valverde, L. Sánchez-Silva, Nanoclay-based PVA aerogels: synthesis and characterization. Indus. Eng. Chem. Res. 57(18), 6218–6225 (2018). https://doi.org/10.1021/acs.iecr.8b00385

    Article  CAS  Google Scholar 

  41. R. Zhang, W. Wan, L. Qiu, Y. Wang, Y. Zhou, Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation. Appl. Surface Sci. 419, 342–347 (2017). https://doi.org/10.1016/j.apsusc.2017.05.044

    Article  CAS  Google Scholar 

  42. W. Zhou, F. Chen, H. Zhang, J. Wang, Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. J. Wood Chem. Technol. 37(5), 323–333 (2017). https://doi.org/10.1080/02773813.2017.1299185

    Article  CAS  Google Scholar 

  43. J. Li, Y. Wang, L. Zhang, Z. Xu, H. Dai, W. Wu, Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustain. Chem. Eng. 7(6), 6381–6389 (2019). https://doi.org/10.1021/acssuschemeng.9b00161

    Article  CAS  Google Scholar 

  44. N. Lv, X. Wang, S. Peng, L. Luo, R. Zhou, Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation. RSC Adv. 8(53), 30257–30264 (2018). https://doi.org/10.1039/c8ra05420g

    Article  CAS  Google Scholar 

  45. X. Teng, H. Xu, W. Song, J. Shi, J. Xin, W.C. Hiscox, J. Zhang, Preparation and properties of hydrogels based on PEGylated lignosulfonate amine. ACS Omega 2(1), 251–259 (2017). https://doi.org/10.1021/acsomega.6b00296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. P. Liu, N. Zhang, Y. Yi, M.E. Gibril, S. Wang, F. Kong, Effect of lignin-based monomer on controlling the molecular weight and physical properties of the polyacrylonitrile/lignin copolymer. Int. J. Biol. Macromol. 164, 2312–2322 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.119

    Article  CAS  PubMed  Google Scholar 

  47. G.-J. Jiao, P. Peng, S.-L. Sun, Z.-C. Geng, D. She, Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer. Int. J. Biol. Macromol. 127, 544–554 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.076

    Article  CAS  PubMed  Google Scholar 

  48. N. Zhang, S. Wang, M.E. Gibril, F. Kong, The copolymer of polyvinyl acetate containing lignin-vinyl acetate monomer: Synthesis and characterization. Eur. Polym. J. 123, 109411 (2020). https://doi.org/10.1016/j.eurpolymj.2019.109411

    Article  CAS  Google Scholar 

  49. D. Meier, V. Zúñiga-Partida, F. Ramírez-Cano, N.-C. Hahn, O. Faix, Conversion of technical lignins into slow-release nitrogenous fertilizers by ammoxidation in liquid phase. Bioresour. Technol. 49(0960–8524), 121–128 (1994)

    Article  CAS  Google Scholar 

  50. N. Zhang, S. Wang, M.E. Gibril, F. Kong, The copolymer of polyvinyl acetate containing lignin-vinyl acetate monomer: Synthesis and characterization. Eur. Polym. J. (2020). https://doi.org/10.1016/j.eurpolymj.2019.109411

    Article  Google Scholar 

  51. G.J. Jiao, P. Peng, S.L. Sun, Z.C. Geng, D. She, Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer. Int. J. Biol. Macromol. 127, 544–554 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.076

    Article  CAS  PubMed  Google Scholar 

  52. M. Li, C. Bian, G. Yang, X. Qiang, Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion. Chem. Eng. J. 368, 350–358 (2019). https://doi.org/10.1016/j.cej.2019.02.176

    Article  CAS  Google Scholar 

  53. F. Ren, Z. Li, W.-Z. Tan, X.-H. Liu, Z.-F. Sun, P.-G. Ren, D.-X. Yan, Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci. 532, 58–67 (2018). https://doi.org/10.1016/j.jcis.2018.07.101

    Article  CAS  PubMed  Google Scholar 

  54. P. Gupta, B. Singh, A.K. Agrawal, P.K. Maji, Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater. Design 158, 224–236 (2018). https://doi.org/10.1016/j.matdes.2018.08.031

    Article  CAS  Google Scholar 

  55. M.A. Karaaslan, J.F. Kadla, F.F. Ko, Lignin-Based Aerogels. In: Lignin in Polymer Composites, ed. By O. Faruk, M. Sain (Elsevier Academic Press: Amsterdam, Netherland 2016), P. 67–93

    Chapter  Google Scholar 

  56. Q. Zheng, Z. Cai, S. Gong, Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A 2(9), 3110–3118 (2014). https://doi.org/10.1039/C3TA14642A

    Article  CAS  Google Scholar 

  57. A. Javadi, Q. Zheng, F. Payen, A. Javadi, Y. Altin, Z. Cai, R. Sabo, S. Gong, Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl. Mater. Interfaces 5(13), 5969–5975 (2013). https://doi.org/10.1021/am400171y

    Article  CAS  PubMed  Google Scholar 

  58. P. Liu, N. Zhang, Y. Yi, M.E. Gibril, S. Wang, F. Kong, Effect of lignin-based monomer on controlling the molecular weight and physical properties of the polyacrylonitrile/lignin copolymer. Int. J. Biol. Macromol. 164, 2312–2322 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.119

    Article  CAS  PubMed  Google Scholar 

  59. F. Xue, D. Jia, Y. Li, X. Jing, Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating. J. Mater. Chem. A 3(26), 13856–13863 (2015). https://doi.org/10.1039/c5ta02780b

    Article  CAS  Google Scholar 

  60. E. Rynkowska, K. Fatyeyeva, S. Marais, J. Kujawa, W. Kujawski, Chemically and thermally crosslinked PVA-based membranes: effect on swelling and transport behavior. Polymers 11(11), 1799 (2019). https://doi.org/10.3390/polym11111799

    Article  CAS  PubMed Central  Google Scholar 

  61. P.K. Khanna, N. Singh, S. Charan, V.V.V.S. Subbarao, R. Gokhale, U.P. Mulik, Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater. Chem. Phys. 93(1), 117–121 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.029

    Article  CAS  Google Scholar 

  62. K.S. Schlufter, Hans-peter dorn, susann heinze, thomas: efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol. Rapid Commun. 27(19), 1670–1676 (2006). https://doi.org/10.1002/marc.200600463

    Article  CAS  Google Scholar 

  63. Z. Liu, R. Liu, Y. Yi, W. Han, F. Kong, S. Wang, Photocatalytic degradation of dyes over a xylan/PVA/TiO2 composite under visible light irradiation. Carbohydr Polym 223, 115081 (2019). https://doi.org/10.1016/j.carbpol.2019.115081

    Article  CAS  PubMed  Google Scholar 

  64. S. Wang, Y. Sun, F. Kong, G. Yang, P. Fatehi, Preparation and characterization of lignin-acrylamide copolymer as a paper strength additive. BioResources (2016). https://doi.org/10.15376/biores.11.1.1765-1783

    Article  PubMed  Google Scholar 

  65. L. Zhou, S. Zhai, Y. Chen, Z. Xu, Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers 11(4), 712 (2019)

    Article  CAS  Google Scholar 

  66. C. Daniel, W. Navarra, V. Venditto, O. Sacco, V. Vaiano, Nanoporous polymeric aerogels–based structured photocatalysts for the removal of organic pollutant from water under visible or solar light. In:  Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants, ed. By O. Sacco, V. Vaiano (Elsevier Academic Press, 2020), P. 99–120

    Chapter  Google Scholar 

  67. Y. Chen, L. Yang, S. Xu, S. Han, S. Chu, Z. Wang, C. Jiang, Ultralight aerogel based on molecular-modified poly(m-phenylenediamine) crosslinking with polyvinyl alcohol/graphene oxide for flow adsorption. RSC Adv. 9(40), 22950–22956 (2019). https://doi.org/10.1039/C9RA04207E

    Article  CAS  Google Scholar 

  68. Z. Xu, X. Jiang, H. Zhou, J. Li, Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 25(2), 1217–1227 (2018). https://doi.org/10.1007/s10570-017-1619-9

    Article  CAS  Google Scholar 

  69. H. Sai, R. Fu, L. Xing, J. Xiang, Z. Li, F. Li, T. Zhang, Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces 7(13), 7373–7381 (2015). https://doi.org/10.1021/acsami.5b00846

    Article  CAS  PubMed  Google Scholar 

  70. Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, Special wettable materials for oil/water separation. J. Mater. Chem. A 2(8), 2445–2460 (2014). https://doi.org/10.1039/C3TA13397D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Natural Science Foundation of Shandong (No. ZR2020MC156), Shandong Key R&D Program (No. 2019JZZY010407, No. 2019JZZY010304), National Natural Science Foundation of China (Grant No. 31971605, 31800499). Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University, SWZ-MS201904), Ministry of Education Certificate of China Postdoctoral Science Foundation Grant (2019M652388), the Natural Science Foundation of Shandong (ZR2018BEM026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Magdi Elamin Gibril or Shoujuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Y., Liu, P., Zhang, N. et al. A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: preparation and characterization. J Porous Mater 28, 1881–1894 (2021). https://doi.org/10.1007/s10934-021-01129-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01129-6

Keywords

Navigation