Skip to main content
Log in

Highly sensitive non-enzymatic glucose sensor with copper oxide nanoparticle impregnated mesoporous silica

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Cuprous oxide (Cu2O) nanoparticles at a loading of 33.5 wt.% were impregnated in amine-functionalized mesoporous silica (NH2-SBA-15) particles, by an in situ chemical reduction method. Subsequently, Cu2O-NH2-SBA-15 hybrid was used as a modifier of glassy carbon electrode (GCE) for making a non-enzymatic glucose sensor. The optimum composition of the modifier on the GCE surface (0.47 mg Cu in Cu2O-NH2-SBA-15/cm2 surface area of GCE) resulted in a wide linearity range (0.2–15 mM glucose) and a high sensitivity of 438.3 µAcm−2 mM−1, due to the high loading of Cu2O in NH2-SBA-15 host. Furthermore, glucose was detected both in normal range (5 mM) and in hypoglycaemic range (2 mM), selectively in presence of concentrations of interfering species typically found in the normal blood, such as sodium chloride (142 mM), potassium chloride (3.7 mM), urea (4.7 mM) and ascorbic acid (0.05 mM). The response time was also less than 5 s. Therefore, it achieved the desirable sensor characteristics, like linearity, sensitivity, selectivity, and speed of response. This better performance of the sensor is mainly attributed to a high electrocatalytic activity of Cu2O nanoparticles towards glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2007). https://doi.org/10.1021/cr068123a

    Article  CAS  PubMed  Google Scholar 

  2. P.W. Barone, R.S. Parker, M.S. Strano, In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 77, 7556–7562 (2005). https://doi.org/10.1021/ac0511997

    Article  CAS  PubMed  Google Scholar 

  3. A.Y. Khan, S.B. Noronha, R. Bandyopadhyaya, Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor. Biochem. Eng. J. 91, 78–85 (2014). https://doi.org/10.1016/j.bej.2014.07.011

    Article  CAS  Google Scholar 

  4. J. Kremeskotter, R. Wilson, D. Schiffrint, B.J. Luff, J. Wilkinson, Detection of glucose via electrochemiluminescene in a thin-layer cell with a planar optical waveguide. Meas. Sci. Technol. 6, 1325–1328 (1995)

    Article  Google Scholar 

  5. M. Morikawa, N. Kimizula, M. Yoshihara, T. Endo, New colorimetric detection of glucose by means of electron-accepting triggered by electron transfer from glucose oxidase. Chem. Eur. J. 8, 5580–5584 (2002)

    Article  CAS  Google Scholar 

  6. A.Y. Khan, R. Bandyopadhyaya, Silver nanoparticle impregnated mesoporous silica as a non-enzymatic amperometric sensor for an aqueous solution of hydrogen peroxide. J. Electroanal. Chem. 727, 184–190 (2014). https://doi.org/10.1016/j.jelechem.2014.05.027

    Article  CAS  Google Scholar 

  7. Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part II. Effect of the nature of the electrode and the electrooxidation mechanism. J. Electroanal. Chem. 196(1), 127–144 (1985). https://doi.org/10.1016/0022-0728(85)85085-3

    Article  Google Scholar 

  8. R.R. Adzic, M.W. Hsiao, E.B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces. J. Electroanal. Chem. 260, 475–485 (1989). https://doi.org/10.1016/0022-0728(89)87164-5

    Article  CAS  Google Scholar 

  9. A. Olejnik, J. Karczewski, A. Dołęga, K. Siuzdak, K. Grochowska, Novel approach to interference analysis of glucose sensing materials coated with Nafion. Bioelectrochemistry 135, 107575 (2020). https://doi.org/10.1016/j.bioelechem.2020.107575

    Article  CAS  PubMed  Google Scholar 

  10. L.H. Li, W. De Zhang, J.S. Ye, Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20(20), 2212–2216 (2008). https://doi.org/10.1002/elan.200804312

    Article  CAS  Google Scholar 

  11. C. Chen et al., Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3(14), 4473–4491 (2013)

    Article  CAS  Google Scholar 

  12. X. Yang et al., Mesoporous materials-based electrochemical biosensors from enzymatic to nonenzymatic. Small 1904022, 1–16 (2019)

    Google Scholar 

  13. Y. Zhang, W. Lei, Q. Wu, X. Xia, Q. Hao, Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel (II) oxides and graphene. Microchim Acta 184, 477–483 (2017). https://doi.org/10.1007/s00604-017-2332-y

    Article  CAS  Google Scholar 

  14. H. Zhang, S. Liu, A combined self-assembly and calcination method for preparation of nanoparticles-assembled cobalt oxide nanosheets using graphene oxide as template and their application for non-enzymatic glucose biosensing. J. Colloid Interface Sci. 485, 159–166 (2017). https://doi.org/10.1016/j.jcis.2016.09.041

    Article  CAS  PubMed  Google Scholar 

  15. J. Chen, W. De Zhang, J.S. Ye, Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 10, 1268–1271 (2008). https://doi.org/10.1016/j.elecom.2008.06.022

    Article  CAS  Google Scholar 

  16. X. Gao, X. Du, D. Liu, H. Gao, P. Wang, J. Yang, Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci. Rep. 10, 1–10 (2020). https://doi.org/10.1038/s41598-020-58403-x

    Article  CAS  Google Scholar 

  17. H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys. 250, 123042 (2020). https://doi.org/10.1016/j.matchemphys.2020.123042

    Article  CAS  Google Scholar 

  18. M. Eryiğit, E. Çepni, B.K. Urhan, H.O. Doğan, T.Ö. Özer, Nonenzymatic glucose sensor based on poly(3,4-ethylene dioxythiophene)/electroreduced graphene oxide modified gold electrode. Synth. Met. 268, 116488 (2020). https://doi.org/10.1016/j.synthmet.2020.116488

    Article  CAS  Google Scholar 

  19. E. Sehit, J. Drzazgowska, D. Buchenau, C. Yesildag, M. Lensen, Z. Altintas, Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosens. Bioelectron. 165, 112432 (2020). https://doi.org/10.1016/j.bios.2020.112432

    Article  CAS  PubMed  Google Scholar 

  20. S. Felix, P. Kollu, B.P.C. Raghupathy, Electrocatalytic activity of Cu 2 O nanocubes-based electrode. J. Chem. Soc. 126, 25–32 (2014)

    CAS  Google Scholar 

  21. X. Zhang, Y. Xu, B. Ye, An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 767, 651–656 (2018). https://doi.org/10.1016/j.jallcom.2018.07.175

    Article  CAS  Google Scholar 

  22. G.H. Wu, X.H. Song, Y.F. Wu, X.M. Chen, F. Luo, X. Chen, Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105, 379–385 (2013). https://doi.org/10.1016/j.talanta.2012.10.066

    Article  CAS  PubMed  Google Scholar 

  23. B. Miller, Split-ring disk study of the anodic processes at a copper electrode in alkaline solution. J. Electrochem. Soc. 116, 1675–1680 (1969). https://doi.org/10.1149/1.2411657

    Article  CAS  Google Scholar 

  24. I. Zaafarany, H. Boller, Electrochemical behavior of copper electrode in sodium hydroxide solutions. Curr. World Environ. 4, 277–284 (2009)

    Article  CAS  Google Scholar 

  25. D. Jiang et al., Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 54, 273–278 (2014). https://doi.org/10.1016/j.bios.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  26. L. Luo, L. Zhu, Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode. Bioelectrochemistry 88, 156–163 (2012). https://doi.org/10.1016/j.bioelechem.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  27. T. Le, V. Bhushan, J. Hoffmann, First Aid for the USMLE Step 1 2012, 2012th edn. (McGraw-Hill Medical, New York, 2012).

    Google Scholar 

  28. Y. Dai, A. Molazemhosseini, K. Abbasi, C.C. Liu, A cuprous oxide thin film non-enzymatic glucose sensor using differential pulse voltammetry and other voltammetry methods and a comparison to different thin film electrodes on the detection of glucose in an alkaline solution. Biosensors 8(1), 4 (2018). https://doi.org/10.3390/bios8010004

    Article  CAS  PubMed Central  Google Scholar 

  29. M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics (Kiel) 23(6), 1553–1562 (2017). https://doi.org/10.1007/s11581-016-1964-y

    Article  CAS  Google Scholar 

  30. M. Shamsipur, Z. Karimi, M.A. Tabrizi, S. Rostamnia, Highly sensitive non-enzymatic electrochemical glucose sensor by Nafion/SBA-15-Cu (II) modified glassy carbon electrode. J. Electroanal. Chem. 799, 406–412 (2017)

    Article  CAS  Google Scholar 

  31. T. Alizadeh, S. Mirzagholipur, A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite. Sens. Actuators B 198, 438–447 (2014)

    Article  CAS  Google Scholar 

  32. E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20(22), 2482–2486 (2008). https://doi.org/10.1002/elan.200804327

    Article  CAS  Google Scholar 

  33. Y.W. Hsu, T.K. Hsu, C.L. Sun, Y.T. Nien, N.W. Pu, M. Der Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim. Acta 82, 152–157 (2012). https://doi.org/10.1016/j.electacta.2012.03.094

    Article  CAS  Google Scholar 

  34. M. Velmurugan, N. Karikalan, S.-M. Chen, Synthesis and characterizations of biscuit-like copper oxide for the non-enzymatic glucose sensor applications. J. Colloid Interface Sci. 493, 349–355 (2017). https://doi.org/10.1016/j.jcis.2017.01.044

    Article  CAS  PubMed  Google Scholar 

  35. J. Song et al., Synthesis of graphene oxide based cuo nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl. Mater. Interfaces 5, 12928–12934 (2013). https://doi.org/10.1021/am403508f

    Article  CAS  PubMed  Google Scholar 

  36. L. Zhang, Y. Ni, H. Li, Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim. Acta 171, 103–108 (2010). https://doi.org/10.1007/s00604-010-0415-0

    Article  CAS  Google Scholar 

  37. M. Ranjani, Y. Sathishkumar, S. Lee, J. Yoo, R. Kim, Ni – Co alloy nanostructures anchored on mesoporous silica nanoparticles for non-enzymatic glucose sensor applications. RSC Adv. 5, 57804–57814 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. V.A. Juvekar is gratefully acknowledged for the potentiostat facility. Sophisticated analytical instrument facilities (SAIF) IIT Bombay and Manipal University Jaipur (MUJ) are gratefully acknowledged for TEM and SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees Y. Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.Y., Bandyopadhyaya, R. Highly sensitive non-enzymatic glucose sensor with copper oxide nanoparticle impregnated mesoporous silica. J Porous Mater 28, 1097–1104 (2021). https://doi.org/10.1007/s10934-021-01064-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01064-6

Keywords

Navigation