Skip to main content
Log in

Optimizing material and manufacturing process for PEGDA/CNF aerogel scaffold

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Cellulose nano fibril (CNF) aerogel, which is provided with high porosity, ultralow density and biodegradable ability, is a promising material for tissue engineering scaffold. Restricted by its poor mechanical properties, common CNF aerogel is unable to make scaffold with customized 3D structures. In order to make it useful in tissue engineering, the synthetic polymer Poly(ethylene glycol) diacrylate (PEGDA) has been chosen to mix with CNF solution to form a kind of composite bio-resin, which is ready for stereolithography. Our former study has proved the printability of the bio-resin and the biocompatibility of the CNF aerogel scaffold. But the relationship among its properties, material component and manufacturing condition has not been systematically studied. Thus an attempt is made to study and optimize the process factors that govern the aerogel scaffold’s property by using Taguchi experiment design in this work, where four main factors of material and fabrication process: the content of PEGDA, the content of CNF, the size of CNF and the pre-freeze temperature have been chosen to make a discussion of their effect on the aerogel scaffold’s properties including its porosity, mechanical property, micro-structure and so on. An orthogonal array of experiment is developed. It has the least number of experimental runs with desired process factor settings. The results analyzed by the tool of Analysis of Variance (ANOVA) show that different factor has various degrees of effect on different properties. Finally the optimized factors are acquired by screening the experiments data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)

    Article  CAS  Google Scholar 

  2. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60(4), 613–621 (2002)

    Article  CAS  Google Scholar 

  3. M. Bhattacharya, M.M. Malinen, P. Lauren, Y.R. Lou, S.W. Kuisma, L. Kanninen, M. Lille, A. Corlu, C. Guguen-Guillouzo, O. Ikkala, Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control. Release Off. J. Control. Release Soc. 164(3), 291–298 (2012)

    Article  CAS  Google Scholar 

  4. F.J. O’Brien, B.A. Harley, I.V. Yannas, L.J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4), 433–441 (2005)

    Article  Google Scholar 

  5. X. Liu, X. Jin, P.X. Ma, Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat. Mater. 10(5), 398–406 (2011)

    Article  Google Scholar 

  6. S. Wang, A. Lu, L. Zhang, Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016)

    Article  CAS  Google Scholar 

  7. C. Jiménez-Saelices, B. Seantier, Y. Grohens, I. Capron, Thermal superinsulating materials made from nanofibrillated cellulose-stabilized Pickering emulsions. ACS Appl. Mater. Interfaces. 10(18), 16193–16202 (2018)

    Article  Google Scholar 

  8. H.C. Bi, X. Xie, K.B. Yin, Y.L. Zhou, S. Wan, L.B. He, F. Xu, F. Banhart, L.T. Sun, R.S. Ruoff, Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Func. Mater. 22(21), 4421–4425 (2012)

    Article  CAS  Google Scholar 

  9. S.C. Liao, T.L. Zhai, H.S. Xia, Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J. Mater. Chem. A 4(3), 1068–1077 (2016)

    Article  CAS  Google Scholar 

  10. C. Hongli, S. Sudhir, L. Wenying, M. Wei, L. Wei, Z. Xiaodan, D. Yulin, Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromol 15(7), 2540–2547 (2014)

    Article  Google Scholar 

  11. J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications. J. Sol-Gel. Sci. Technol. 77(3), 738–752 (2016)

    Article  CAS  Google Scholar 

  12. C. Zhang, T. Zhai, L.S. Turng, Aerogel microspheres based on cellulose nanofibrils as potential cell culture scaffolds. Cellulose 24(7), 2791–2799 (2017)

    Article  CAS  Google Scholar 

  13. C. Wenshuai, L. Qing, W. Youcheng, Y. Xin, Z. Jie, Y. Haipeng, L. Yixing, L. Jian, Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7(1), 154–161 (2014)

    Article  Google Scholar 

  14. H. Sehaqui, M. Salajková, Z. Qi, L.A. Berglund, Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8), 1824–1832 (2010)

    Article  CAS  Google Scholar 

  15. K. Yuri, S. Tsuguyuki, I. Akira, Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 53(39), 10253–10253 (2015)

    Google Scholar 

  16. Z.Q. Yang, J.H. Si, Z.X. Cui, J.H. Ye, X.F. Wang, Q.T. Wang, K.P. Peng, W.Z. Chen, S.C. Chen, Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils. Carbohydr. Polym. 174, 750–759 (2017). https://doi.org/10.1016/j.carbpol.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  17. H. Alenezi, M.E. Cam, M. Edirisinghe, Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Appl. Phys. Rev. 6(4), 13 (2019). https://doi.org/10.1063/1.5110965

    Article  CAS  Google Scholar 

  18. V.C.F. Li, A. Mulyadi, C.K. Dunn, Y. Deng, H.J. Qi, Direct Ink Write (DIW) 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable and functionalizable properties. ACS Sustain. Chem. Eng. 6(2), 2011–2022 (2017)

    Article  Google Scholar 

  19. A. Rees, L.C. Powell, G. Chingacarrasco, D.T. Gethin, K. Syverud, K.E. Hill, D.W. Thomas, 3D Bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res. Int. 2015(2), 925757 (2015)

    PubMed  PubMed Central  Google Scholar 

  20. A.K. Mohanty, M. Misra, L.T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos. Interfaces 8(5), 313–343 (2001)

    Article  CAS  Google Scholar 

  21. O.N. Khlebnikov, V.E. Silantev, Y.A. Shchipunov, Dimensionally stable aerogels from cellulose mechanically treated to a moderate microfibrillar degree. Mendeleev Commun. 28(2), 214–215 (2018)

    Article  CAS  Google Scholar 

  22. Y. Li, L. Xu, B. Xu, Z. Mao, H. Xu, Y. Zhong, L. Zhang, B. Wang, X. Sui, Cellulose sponge supported palladium nanoparticles as recyclable cross-coupling catalysts. ACS Appl. Mater. Interfaces. 9(20), 17155–17162 (2017)

    Article  CAS  Google Scholar 

  23. X. Ge, Y. Shan, W. Lin, X. Mu, P. Hui, Y. Jiang, High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohyd. Polym. 197, 277–283 (2018)

    Article  CAS  Google Scholar 

  24. S. Kalia, A. Dufresne, B.M. Cherian, B.S. Kaith, L. Averous, J. Njuguna, E. Nassiopoulos, Cellulose-based bio- and nanocomposites: a review. Int. J. Polym. Sci. 2011, 1–35 (2011)

    Google Scholar 

  25. J.K. Pandey, S.H. Ahn, C.S. Lee, A.K. Mohanty, M. Misra, Recent Advances in the application of natural fiber based composites. Macromol. Mater. Eng. 295(11), 975–989 (2010)

    Article  CAS  Google Scholar 

  26. B. Deepa, S.S. Pillai, L.A. Pothan, S. Thomas, Mechanical properties of cellulose-based bionanocomposites. Biopolym. Nanocomp. Process. Proper. App. 177(1), 20–36 (2009)

    Google Scholar 

  27. R. Cancedda, B. Dozin, P. Giannoni, R. Quarto, Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 22(1), 81–91 (2004)

    Article  Google Scholar 

  28. C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, A. Khademhosseini, Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomater. Sci. 2(5), 703–709 (2014)

    Article  CAS  Google Scholar 

  29. W.L. Jin, P. Soman, J.H. Park, S. Chen, D.W. Cho, A tubular biomaterial construct exhibiting a negative Poisson’s ratio. PLoS ONE 11(5), e0155681 (2016)

    Article  Google Scholar 

  30. Y. Huang, X.F. Zhang, G. Gao, T. Yonezawa, X. Cui, 3D bioprinting and the current applications in tissue engineering. Biotechnol. J. 12(8), 1600734 (2017)

    Article  Google Scholar 

  31. A. Tang, Q. Wang, S. Zhao, W. Liu, Fabrication of nanocellulose/PEGDA hydrogel by 3D printing. Rapid Prototyping J. 24(8), 1265–1271 (2018)

    Article  Google Scholar 

  32. A.M. Tang, J. Li, J. Li, S. Zhao, W.Y. Liu, T.T. Liu, J.F. Wang, Y.Y. Liu, Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture. J. Biomater. Sci.-Polym. Ed. 30(10), 797–814 (2019)

    Article  CAS  Google Scholar 

  33. R. Langer, J.P. Vacanti, Tissue engineering. Science 260(5110), 920–926 (1993)

    Article  CAS  Google Scholar 

  34. A.J. Svagan, P. Jensen, S.V. Dvinskikh, I. Furó, L.A. Berglund, Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J. Mater. Chem. 20(32), 6646–6654 (2010)

    Article  CAS  Google Scholar 

  35. P.R. Nelson, Design and analysis of experiments, 3rd Ed. J. Quality Technol. 23(4), 375–375 (1991)

    Article  Google Scholar 

  36. C.S. Bahney, T.J. Lujan, C.W. Hsu, M. Bottlang, J.L. West, B. Johnstone, Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cell Mater. 22(7), 43–55 (2011)

    Article  CAS  Google Scholar 

  37. D. Sun, W. Liu, A. Tang, F. Guo, W. Xie, A new PEGDA/CNF aerogel-wet hydrogel scaffold fabricated by two-step method. Soft Matter (2019). https://doi.org/10.1039/C9SM00899C

    Article  PubMed  PubMed Central  Google Scholar 

  38. E.C. Beck, M. Barragan, M.H. Tadros, S.H. Gehrke, M.S. Detamore, Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 38, 94–105 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Grant Nos. 51875214 & 11972161), Science and Technology Program of Guangzhou, China (Grant No. 201804010452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyu Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Liu, W., Zhou, F. et al. Optimizing material and manufacturing process for PEGDA/CNF aerogel scaffold. J Porous Mater 27, 1623–1637 (2020). https://doi.org/10.1007/s10934-020-00938-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00938-5

Keywords

Navigation