Skip to main content
Log in

The role of barrier layer temperature in the formation of long and small-diameter TiO2 nanotube arrays

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Small-diameter TiO2 nanotubes (TNTs) are fabricated at a fast growth rate by developing an effective anodization method in an organic electrolyte. Two different temperatures are applied to both sides of sample in order to increase the current density during the anodization process. Here, we use a high temperature for the backside of the sample (direct heating of the barrier oxide layer) in order to increase the current density while keeping the electrolyte at a low temperature to decrease the chemical etching at top of the TNT arrays. Increasing the backside temperature up to 55 °C leads to the formation of longest TNTs with an average diameter of about 17 nm at high-speed TNT growth of about 2000 nm/h under 20 V. Based on the high-field theory and accurate estimation of the barrier layer (BL) temperature, the incremental effect of increasing the BL temperature on the anodization current is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TNT:

TiO2 nanotube

BL:

Barrier layer

FE-SEM:

Field-emission scanning electron microscopy

References

  1. Y. Kwon, H. Kim, S. Lee, I.J. Chin, T.Y. Seong, W.I. Lee, C. Lee, Sens. Actuators B 173, 441 (2012)

    CAS  Google Scholar 

  2. H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Chem. Commun. 49, 2067 (2013)

    CAS  Google Scholar 

  3. A.F. Kanta, M. Poelman, A. Decroly, Sol. Energy Mater. Sol. Cells 133, 76 (2015)

    CAS  Google Scholar 

  4. J. Yoo, R. Zazpe, G. Cha, J. Prikryl, I. Hwang, J.M. Macak, P. Schmuki, Electrochem. Commun. 86, 6 (2018)

    CAS  Google Scholar 

  5. H. Wu, H. Jile, Z. Chen, D. Xu, Z. Yi, X. Chen, J. Chen, W. Yao, P. Wu, Y. Yi, Micromachines 11, 189 (2020)

    PubMed Central  Google Scholar 

  6. Z. Yi, X. Li, H. Wu, X. Chen, H. Yang, Y. Tang, Y. Yi, J. Wang, P. Wu, Nanomaterials 9, 1254 (2019)

    CAS  PubMed Central  Google Scholar 

  7. N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, Y. Ein-Eli, Electrochim. Acta 54, 3381 (2009)

    CAS  Google Scholar 

  8. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006)

    CAS  PubMed  Google Scholar 

  9. M. Paulose, H.E. Prakasam, X. Varghese, K.C. Peng Popat, G.K. Mor, C.A. Grimes, J. Phys. Chem. C 111, 14992 (2007)

    CAS  Google Scholar 

  10. S. Sreekantan, K.A. Saharudin, Z. Lockman, T.W. Tzu, Nanotechnology 21, 365603 (2010)

    PubMed  Google Scholar 

  11. S. Zou, S. Zhong, C. Lv, C. Wang, T. Chen, Z. Liu, S. Zhang, J. Porous Mater. 23, 1239 (2016)

    CAS  Google Scholar 

  12. S. Ozkan, A. Mazare, P. Schmuki, Electrochim. Acta 268, 435 (2018)

    CAS  Google Scholar 

  13. Z. Yi, Y. Zeng, H. Wu, X. Chen, Y. Fan, H. Yang, Y. Tang, Y. Yi, J. Wang, P. Wu, Results Phys. 15, 102609 (2019)

    Google Scholar 

  14. L. Sun, S. Zhang, Q. Wang, D. Zhao, Nanosci. Nanotechnol. Lett. 4, 471 (2012)

    CAS  Google Scholar 

  15. X. Wang, L. Sun, S. Zhang, X. Wang, ACS Appl. Mater. Interfaces. 6, 1361 (2014)

    CAS  PubMed  Google Scholar 

  16. R.A. Ocampo, F.E. Echeverría, Appl. Surf. Sci. 469, 994 (2019)

    Google Scholar 

  17. M.Y. Lan, C.P. Liu, H.H. Huang, J.K. Chang, S.W. Lee, Nanoscale Res. Lett. 8, 150 (2013)

    PubMed  PubMed Central  Google Scholar 

  18. S. Bauer, S. Kleber, P. Schmuki, Electrochem. Commun. 8, 1321 (2006)

    CAS  Google Scholar 

  19. K. Zhu, N.R. Neale, A. Miedaner, A. Frank, Nano Lett. 7, 69 (2007)

    CAS  PubMed  Google Scholar 

  20. N. Liu, K. Lee, P. Schmuki, Electrochem. Commun. 15, 1 (2012)

    Google Scholar 

  21. S. So, K. Lee, P. Schmuki, J. Am. Chem. Soc. 134, 11316 (2012)

    CAS  PubMed  Google Scholar 

  22. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007)

    CAS  Google Scholar 

  23. M. Erol, T. Dikici, M. Toparli, E. Celik, J. Alloy. Compd. 604, 66 (2014)

    CAS  Google Scholar 

  24. V. Asgari, M. Noormohammadi, A. Ramazani, M.A. Kashi, Phys. D: Appl. Phys. 50, 375501 (2017)

    Google Scholar 

  25. J. Kapusta-Kołodziej, O. Tynkevych, A. Pawlik, M. Jarosz, J. Mech, G.D. Sulka, Electrochim. Acta 144, 127 (2014)

    Google Scholar 

  26. T. Ruff, R. Hahn, P. Schmuki, Appl. Surf. Sci. 257, 8177 (2011)

    CAS  Google Scholar 

  27. F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10(9), 2470–2480 (1998)

    CAS  Google Scholar 

  28. T. Ghani, M. Mujahid, M. Mehmood, G. Zhang, J. Porous Mater. 26, 193 (2019)

    CAS  Google Scholar 

  29. Y. Zhang, W. Cheng, F. Du, S. Zhang, W. Ma, D. Li, X. Zhu, Electrochim. Acta 180, 147 (2015)

    CAS  Google Scholar 

  30. W.C. Chen, M.-H. Yeh, L.Y. Lin, R. Vittal, K.C. Ho, ACS Sustain. Chem. Eng. 6, 3907 (2018)

    CAS  Google Scholar 

  31. K. Yasuda, P. Schmuki, Electrochim. Acta 52, 4053 (2007)

    CAS  Google Scholar 

  32. L. Sun, S. Zhang, X.W. Sun, X. He, Electroanal. Chem. 637, 6 (2009)

    CAS  Google Scholar 

  33. W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)

    CAS  PubMed  Google Scholar 

  34. X.Y. Han, W.Z. Shen, X.Y. Han, W.Z. Shen, Electroanal. Chem. 655, 56 (2011)

    CAS  Google Scholar 

  35. X. Wang, S. Zhang, L. Sun, Thin Solid Films 519, 4694–4698 (2011)

    CAS  Google Scholar 

  36. A. Apolinário, C.T. Sousa, J. Ventura, L. Andrade, A.M. Mendes, J.P. Araújo, Nanotechnology 25, 485301 (2014)

    PubMed  Google Scholar 

  37. J. Kapusta-Kołodzieja, K. Syreka, A. Pawlika, M. Jarosza, O. Tynkevychb, G.D. Sulka, Appl. Surf. Sci. 396, 1119 (2017)

    Google Scholar 

  38. M.M. Lohrengel, Mater. Sci. Eng. R Rep. 11, 243 (1993)

    Google Scholar 

  39. A. Apolinário, P. Quitério, C.T. Sousa, J. Ventura, J.B. Sousa, L. Andrade, A.M. Mendes, J.P. Araújo, J. Phys. Chem. Lett. 6, 845 (2015)

    PubMed  Google Scholar 

  40. M. Nagayama, K. Tamura, Electrochim. Acta 13, 1773 (1968)

    CAS  Google Scholar 

  41. J.E. Houser, Nat. Mater. 8, 415 (2009)

    CAS  PubMed  Google Scholar 

  42. B. Li, X. Gao, H.-C. Zhang, C. Yuan, ACS Sustain. Chem. Eng. 2, 404 (2014)

    CAS  Google Scholar 

  43. J.R. Welty, Engineering heat transfer (John Wiley & Sons Inc, New York, 1974)

    Google Scholar 

  44. P. Chowdhury, A.N. Thomas, M. Sharma, H.C. Barshilia, Electrochim. Acta 115, 657 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No. 682126/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Noormohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, V., Noormohammadi, M., Ramazani, A. et al. The role of barrier layer temperature in the formation of long and small-diameter TiO2 nanotube arrays. J Porous Mater 27, 1613–1621 (2020). https://doi.org/10.1007/s10934-020-00936-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00936-7

Keywords

Navigation