Skip to main content
Log in

In situ growth of ZIF-8 onto porous carbons as an efficient adsorbent for malachite green removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Zeolite imidazolate frameworks (ZIFs) exhibit great potential for organic pollutant removal from water by adsorption. However, it is difficult to remove nanosized ZIFs after adsorption. Here, well-dispersed ZIF-8 is successfully grown onto porous carbons by an in situ growth method. The resultant ZIF-8/Carbon shows excellent adsorption removal efficiency for malachite green (MG) with a maximum adsorption capacity of 3056 mg/g at 30 °C. The adsorption kinetics and isotherm data fit well with the pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The influences of temperature, solution pH and salts are also investigated. In addition, the adsorbent can be separated easily by filtration because of its large particle size. Moreover, regeneration experiments reveal that the used adsorbent still exhibits excellent applicability after at least four recycling runs. These features enable ZIF-8/Carbon to be a promising adsorbent for the removal of MG from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.D. Raman, S. Kanmani, Textile dye degradation using nano zero valent iron: a review. J. Environ. Manag. 177, 341–355 (2016)

    CAS  Google Scholar 

  2. S. Yu, X. Wang, H. Pang, R. Zhang, W. Song, D. Fu, T. Hayat, X. Wang, Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem. Eng. J. 333, 343–360 (2018)

    CAS  Google Scholar 

  3. X. Li, X. Yan, X. Hu, R. Feng, M. Zhou, Yolk-shell ZIFs@SiO2 and its derived carbon composite as robust catalyst for peroxymonosulfate activation. J. Environ. Manag. 262, 110299 (2020)

    CAS  Google Scholar 

  4. D.J. Alderman, R.S. Clifton-Hadley, Malachite green: a pharmacokinetic study in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 16, 297–311 (1993)

    CAS  Google Scholar 

  5. X. Li, Y. Zhang, L. Jing, X. He, Novel N-doped CNTs stabilized Cu2O nanoparticles as adsorbent for enhancing removal of malachite green and tetrabromobisphenol A. Chem. Eng. J. 292, 326–339 (2016)

    CAS  Google Scholar 

  6. L. Zhao, W. Lv, J. Hou, Y. Li, J. Duan, S. Ai, Synthesis of magnetically recyclable g-C3N4/Fe3O4/ZIF-8 nanocomposites for excellent adsorption of malachite green. Microchem. J. 152, 104425 (2020)

    Google Scholar 

  7. R.F. Mansa, C.S. Sipaut, I.A. Rahman, N.S.M. Yusof, M. Jafarzadeh, Preparation of glycine-modified silica nanoparticles for the adsorption of malachite green dye. J. Porous Mater. 23, 35–46 (2016)

    CAS  Google Scholar 

  8. A. Sharma, A. Dubey, Surface modified mesoporous silica polymer nanocomposites for adsorption of dyes from aqueous solution. J. Porous Mater. 24, 429–435 (2017)

    CAS  Google Scholar 

  9. A. Berberidou, I. Poulios, N.P. Xekoukoulotakis, D. Mantzavinos, Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl. Catal. B 74, 63–72 (2007)

    CAS  Google Scholar 

  10. X. Hu, X. Kang, T. Chen, X. Yan, M. Zhou, S. Komarneni, Facile synthesis of nanostructured porous carbon/silica composite and its adsorption property. J. Porous Mater. 23, 833–836 (2016)

    CAS  Google Scholar 

  11. S.A. Sadat, A.M. Ghaedi, M. Panahimehr, M.M. Baneshi, A. Vafaei, M. Ansarizadeh, Rapid room-temperature synthesis of cadmium zeolitic imidazolate framework nanoparticles based on 1,1′-carbonyldiimidazole as ultra-high-efficiency adsorbent for ultrasound-assisted removal of malachite green dye. Appl. Surf. Sci. 467–468, 1204–1212 (2019)

    Google Scholar 

  12. J. Zhang, X. Yan, M. Hu, X. Hu, M. Zhou, Adsorption of Congo red from aqueous solution using ZnO modified SiO2 nanospheres with rough surfaces. J. Mol. Liquid 249, 772–778 (2018)

    CAS  Google Scholar 

  13. M. Sarker, I. Ahmed, S.H. Jhung, Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ ZIF-8. Chem. Eng. J. 323, 203–211 (2017)

    CAS  Google Scholar 

  14. S.L. James, Metal-organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003)

    CAS  PubMed  Google Scholar 

  15. S.H. Jhung, N.A. Khan, Z. Hasan, Analogous porous metal-organic frameworks: synthesis, stability and application in adsorption. CrystEngComm 14(21), 7099–7109 (2012)

    CAS  Google Scholar 

  16. D.K. Yoo, S.H. Jhung, Effect of functional groups of metal–organic frameworks, coated on cotton, on removal of particulate matters via selective interactions. ACS Appl. Mater. Interfaces 11, 47649–47657 (2019)

    CAS  PubMed  Google Scholar 

  17. X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal-organic framework through chemical treatment. Microporous Mesoporous Mater. 183, 69–73 (2014)

    CAS  Google Scholar 

  18. J. Dai, X. Xiao, S. Duan, J. Liu, J. He, J. Lei, L. Wang, Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water. Chem. Eng. J. 331, 64–74 (2018)

    CAS  Google Scholar 

  19. J. Zhang, X. Yan, X. Hu, R. Feng, M. Zhou, Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B. Chem. Eng. J. 347, 640–647 (2018)

    CAS  Google Scholar 

  20. Y. Li, X. Yan, X. Hu, R. Feng, M. Zhou, Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water. Chem. Eng. J. 375, 122003 (2019)

    CAS  Google Scholar 

  21. H. Duan, X. Hu, Z. Sun, Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution. J. Hazard Mater. 384, 121406 (2020)

    PubMed  Google Scholar 

  22. K.Y.A. Lin, H.A. Chang, Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624–631 (2015)

    CAS  PubMed  Google Scholar 

  23. K.Y.A. Lin, W.D. Lee, Highly efficient removal of Malachite green from water by a magnetic reduced graphene oxide/zeolitic imidazolate framework self-assembled nanocomposite. Appl. Surf. Sci. 361, 114–121 (2016)

    CAS  Google Scholar 

  24. L. Jin, J. Ye, Y. Wang, X. Qian, M. Dong, Electrospinning synthesis of ZIF-67/PAN fibrous membrane with high-capacity adsorption for malachite green. Fibers Polym. 20, 2070–2077 (2019)

    CAS  Google Scholar 

  25. J. Zhang, J. Guo, Y. Xia, Y. Gan, H. Huang, C. Liang, G. Du, X. Tao, W. Zhang, Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium–sulfur batteries. New J. Chem. 43, 1380 (2019)

    CAS  Google Scholar 

  26. M. Pattabi, B.S. Amma, K. Manzoor, Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix. Mater. Res. Bull. 42, 828–835 (2007)

    CAS  Google Scholar 

  27. I. Esparza, M. Paredes, R. Martinez, A. Gaona-Couto, G. Sanchez-Loredo, L.M. Flores-Velez, O. Dominguez, Solid state reactions in Cr2O3-ZnO nanoparticles synthesized by triethanolamine chemical precipitation. Mater. Sci. Appl. 2, 1584–1592 (2011)

    CAS  Google Scholar 

  28. A. Umar, M.S. Chauhan, S. Chauhan, R. Kumar, G. Kumar, S.A. Al-Sayari, S.W. Hwang, Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties. J. Colloid Interface Sci. 363, 521–528 (2011)

    CAS  PubMed  Google Scholar 

  29. A.F. Gross, E. Sherman, J.J. Vajo, Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 41, 5458–5460 (2012)

    CAS  PubMed  Google Scholar 

  30. M. Hu, L. He, X. Yan, X. Hu, R. Feng, M. Zhou, In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous Mesoporous Mat. 271, 68–72 (2018)

    CAS  Google Scholar 

  31. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs ZIF-8 and ZIF-67. J. Mater. Chem. A 5, 952–957 (2017)

    CAS  Google Scholar 

  32. D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140, 1812–1823 (2018)

    CAS  PubMed  Google Scholar 

  33. P.F. Liu, K. Tao, G.C. Li, M.K. Wu, S.R. Zhu, F.Y. Yi, W.N. Zhao, L. Han, In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture. Dalton Trans. 45, 12632–12635 (2016)

    CAS  PubMed  Google Scholar 

  34. Y. Yang, X. Yan, X. Hu, R. Feng, M. Zhou, In-situ growth of ZIF-8 on layered double hydroxide: effect of Zn/Al molar ratios on their structural, morphological and adsorption properties. J. Colloid. Interface Sci. 505, 206–212 (2017)

    CAS  PubMed  Google Scholar 

  35. A. Musikavanhu, Z. Hu, R.L. Dzapata, Y. Xu, P. Christie, D. Guo, J. Li, Facile method for the preparation of superhydrophobic cellulosic paper. Appl. Surf. Sci. 496, 143648 (2019)

    CAS  Google Scholar 

  36. H. Suquet, Effects of dry grinding and leaching on the crystal structure of chrysotile. Clays Clay Miner. 37, 439–445 (1989)

    CAS  Google Scholar 

  37. A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf. A 363, 98–104 (2010)

    CAS  Google Scholar 

  38. G. Ren, Z. Li, W. Yang, M. Faheem, J. Xing, X. Zou, Q. Pan, G. Zhu, Y. Du, ZnO@ ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sens. Actuator B 284, 421–427 (2019)

    CAS  Google Scholar 

  39. S. Huang, J. Zhao, C. Wu, X. Wang, S. Fei, Q. Zhang, Q. Wang, Z. Chen, K. Uvdal, A. Hu, ZIF-assisted construction of magnetic multiple core-shell Fe3O4@ZnO@N-doped carbon composites for effective photocatalysis. Chem. Eng. Sci. 209, 115185 (2019)

    CAS  Google Scholar 

  40. X. Duan, W. Liu, L. Chang, Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization. J. Taiwan Inst. Chem. E. 62, 132–139 (2016)

    CAS  Google Scholar 

  41. A.S. Sartape, A.M. Mandhare, V.V. Jadhav, P.D. Raut, M.A. Anuse, S.S. Kolekar, Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Aribian J. Chem. 10, 3229–3238 (2017)

    Google Scholar 

  42. A.P. Sekhar, S. Kalidhasan, V. Rajesh, N. Rajesh, Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere 77, 842–847 (2009)

    PubMed  Google Scholar 

  43. M.K. Purkait, D.S. Gusain, S. DasGupta, S. De, Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics by using different surfactants. Sep. Sci. Tech. 39, 2419–2440 (2014)

    Google Scholar 

  44. M.K. Purkait, A. Maiti, S. Das Gupta, S. De, Removal of congo red using activated carbon and its regeneration. J. Hazard Mater. 145, 287–295 (2007)

    CAS  PubMed  Google Scholar 

  45. F. Borousan, F. Yousefi, M. Ghaedi, Removal of malachite green dye using IRMOF-3–MWCNT-OH–Pd-NPs as a novel adsorbent: kinetic, isotherm, and thermodynamic studies. J. Chem. Eng. Data 64, 4801–4814 (2019)

    CAS  Google Scholar 

  46. P. Arabkhani, A. Asfaram, Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J. Hazard Mater. 384, 121394 (2020)

    PubMed  Google Scholar 

  47. J.Q. Jiang, C.X. Yang, X.P. Yan, Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Interface 5, 9837–9842 (2013)

    CAS  Google Scholar 

  48. A.K. Jung, J.W. Jun, Z. Hasan, S.H. Jhung, Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem. Eng. J. 267, 9–15 (2015)

    CAS  Google Scholar 

  49. T. Zhang, H. Liu, H.H.P. Fang, Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manag. 69, 149–156 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2018XKQYMS18) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, X., Hu, X. et al. In situ growth of ZIF-8 onto porous carbons as an efficient adsorbent for malachite green removal. J Porous Mater 27, 1109–1117 (2020). https://doi.org/10.1007/s10934-020-00887-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00887-z

Keywords

Navigation