Skip to main content
Log in

Synthesis and characterization of a xonotlite fibers–silica aerogel composite by ambient pressure drying

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Xonotlite fibers (XFs) reinforced silica aerogel composites were prepared by a sol–gel method under ambient pressure drying. XFs were synthesized through a dynamic hydrothermal route and had a noodle-like structure with length of 5–10 μm and average diameter of 150–200 nm. The microstructure analysis showed that XFs were inlaid in silica aerogel matrix by physical combination which contributed to restrict the volume shrinkage of alcogels and maintain the integrality aerogels during drying process. The physical, naonporous and thermal properties of the as prepared aerogel composites were investigated and discussed in detail. The new aerogel composites possessed porous nanostructure, which exhibited typical properties of 0.126 g/cm3 density, 4.132 cm3/g pore volume, and thermal conductivity of 0.0285 W/(m K). The results indicated that the introduced XFs didn’t significantly alter the porosity, hydrophobicity or thermal conductivity of aerogel matrix. It was also found that the aerogel composites had much more outstanding porosity than that of pure aerogel upon calcinations at 800 °C. This study fabricated XFs–silica aerogel composites and explored a new way for silica aerogels to endure and remain monolithic under ambient pressure drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.W. Hrubesh, J. Non-Cryst. Solids 225, 335 (1998)

    Article  CAS  Google Scholar 

  2. A.A. Pisal, A.V. Rao, J. Porous Mater 24, 685 (2017)

    Article  CAS  Google Scholar 

  3. M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels Handbook (Springer, New York, 2011), pp. 29–38

    Book  Google Scholar 

  4. A. Soleimani Dorcheh, M.H. Abbasi, J. Mater. Process. Technol. 199, 10 (2008)

    Article  CAS  Google Scholar 

  5. S.M. Jones, J. Sol Gel Sci. Technol. 40, 351 (2006)

    Article  CAS  Google Scholar 

  6. Mohamed H. Sorour, Heba A. Hani, Ghada A. Al-Bazedi, A.M. EL-Rafei, J. Porous Mater. 23, 1401 (2016)

    Article  CAS  Google Scholar 

  7. M. Domínguez, E. Taboada, E. Molins, J. Llorca, Catal. Today 138, 193 (2008)

    Article  CAS  Google Scholar 

  8. M. Ramamoorthy, A.A. Pisal, R.S. Rengasamy, A.V. Rao, J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0431-0

    Article  Google Scholar 

  9. J.E. Fesmire, J.P. Sass, Cryogenics 48, 223 (2008)

    Article  CAS  Google Scholar 

  10. K.I. Jensen, J.M. Schultz, F.H. Kristiansen, J. Non-Cryst. Solids 350, 351 (2004)

    Article  CAS  Google Scholar 

  11. L.W. Hrubesh, R.W. Pekala, J. Mater. Res. 9, 731 (1994)

    Article  CAS  Google Scholar 

  12. M. Moragues, Aerogel-based Composite/Hybrid Nanomaterials for Cost-Effective Building Super-Insulation Systems, Printed Pamphlet (2011)

  13. D.B. Mahadik, A.V. Rao, R. Kumar, S.V. Ingale, P.B. Wagh, S.C. Gupta, J. Porous Mater. 19, 87 (2012)

    Article  CAS  Google Scholar 

  14. J.L. Gurav, A.V. Rao, D.Y. Nadargi, H. Park, J. Mater. Sci. 45, 503 (2010)

    Article  CAS  Google Scholar 

  15. M. de Fátima Júlio, L.M. Ilharco, Microporous Mesoporous Mater. 199, 29 (2014)

    Article  CAS  Google Scholar 

  16. X. Yang, Y. Sun, D. Shi, J. Liu, Mater. Sci. Eng. A 528, 4830 (2011)

    Article  CAS  Google Scholar 

  17. X. Yang, Y. Sun, D. Shi, J. Non-Cryst. Solids 358, 519 (2012)

    Article  CAS  Google Scholar 

  18. B. Yuan, S. Ding, D. Wang, G. Wang, H. Li, Mater. Lett. 75, 204 (2012)

    Article  CAS  Google Scholar 

  19. Z. Li, L. Gong, X. Cheng, S. He, C. Li, H. Zhang, Mater. Des. 99, 349 (2016)

    Article  CAS  Google Scholar 

  20. A. Ślosarczyk, M. Barełkowski, S. Niemier, P. Jakubowska, J. Sol Gel Sci. Technol. 76, 227 (2015)

    Article  CAS  Google Scholar 

  21. A. Ślosarczyk, S. Wojciech, Z. Piotr, J. Paulina, J. Non-Cryst. Solids 416, 1 (2015)

    Article  CAS  Google Scholar 

  22. M.M. Koebel, L. Huber, S. Zhao, W.J. Malfait, J. Sol Gel Sci. Technol. 79, 308 (2016)

    Article  CAS  Google Scholar 

  23. J.D. Feng, D. Le, S.T. Nguyen, V.T.C. Nien, D. Jewell, H.M. Duong, Colloid Surf. A 506, 298 (2016)

    Article  CAS  Google Scholar 

  24. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  CAS  Google Scholar 

  25. J. Villarroel-Rocha, D. Barrera, K. Sapag, Microporous Mesoporous Mater. 200, 68 (2014)

    Article  CAS  Google Scholar 

  26. A.C. Pierre, E. Elaloui, G.M. Pajonk, Langmuir 14, 66 (1998)

    Article  CAS  Google Scholar 

  27. S.D. Bhagat, Y.H. Kim, K.H. Suh, Y.S. Ahn, J.G. Yeo, J.H. Han, Microporous Mesoporous Mater. 112, 504 (2008)

    Article  CAS  Google Scholar 

  28. P.B. Wagh, S.V. Ingale, Ceram. Int. 28, 43 (2002)

    Article  CAS  Google Scholar 

  29. S.V. Ingale, P.B. Wagh, A.K. Tripathi, V.S. Kamble, R. Kumar, S.C. Gupta, J. Porous Mater. 18, 567 (2011)

    Article  CAS  Google Scholar 

  30. X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Science 255, 971 (1992)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Hongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jiang, H. & Xu, D. Synthesis and characterization of a xonotlite fibers–silica aerogel composite by ambient pressure drying. J Porous Mater 25, 1417–1425 (2018). https://doi.org/10.1007/s10934-017-0554-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0554-3

Keywords

Navigation