Skip to main content

Advertisement

Log in

Synthesis of MIL-101@g-C3N4 nanocomposite for enhanced adsorption capacity towards CO2

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

MIL-101@g-C3N4 nanocomposite was prepared by solvothermal synthesis and used for CO2 adsorption. The parent materials (MIL-101 and g-C3N4) and the MIL-101@g-C3N4 were characterized by X-ray diffraction, argon adsorption/desorption, Fourier transform infrared spectroscopy, thermal analysis (TG/DTA), transmission electronic microscopy, and Energy-dispersive X-ray spectroscopy. The results confirmed the formation of well-defined MIL-101@g-C3N4 with interesting surface area and pore volume. Furthermore, both MIL-101 and MIL-101@g-C3N4 were accomplished in carbon dioxide capture at different temperatures (280, 288, 273 and 298 K) at lower pressure. The adsorption isotherms show that the nanocomposite has a good CO2 adsorption affinity compared to MIL-101. The best adsorption capacity is about 1.6 mmol g−1 obtained for the nanocomposite material which is two times higher than that of MIL-101, indicating strong interactions between CO2 and MIL-101@g-C3N4. This difference in efficacy is mainly due to the presence of the amine groups dispersed in the nanocomposite. Finally, we have developed a simple route for the preparation of an effective and new adsorbent for the removal of CO2, which can be used as an excellent candidate for gas storage, catalysis, and adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.R. Cook, Y.R. Zheng, P.J. Stang, Chem. Rev. 113(1), 734–777 (2012)

    Article  Google Scholar 

  2. H. Yoshitake, T. Yokoi, T. Tatsumi, Chem. Mater 14(11), 4603–4610 (2002)

    Article  CAS  Google Scholar 

  3. Y. Ma, W. Tong, H. Zhou, S.L. Suib, Microporous Mesoporous Mater. 37(1), 243–252 (2000)

    Article  CAS  Google Scholar 

  4. S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014)

    Article  Google Scholar 

  5. C. Janiak, J.K. Vieth, New J. Chem. 34(11), 2366–2388 (2010)

    Article  CAS  Google Scholar 

  6. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309(5743), 2040–2042 (2005)

    Article  Google Scholar 

  7. P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Microporous Mesoporous Mater. 152, 246–252 (2012)

    Article  CAS  Google Scholar 

  8. C. Petit, T.J. Bandosz, Adv. Mater. 21, 4753–4757 (2009)

    Article  CAS  Google Scholar 

  9. Z. Zhang, Y. Zhao, Q. Gong, Z. Li, J. Li, Chem. Commun. 49(7), 653–661 (2013)

    Article  CAS  Google Scholar 

  10. J. Zhou, K. Liu, C. Kong, L. Chen, Bull. Korean Chem. Soc. 34(6), 1625–1631 (2013)

    Article  CAS  Google Scholar 

  11. H.G.T Nguyen, M.H. Weston, O.K. Farha, J.T. Hupp, CrystEngComm 14(12), 4115–4118 (2012)

    Article  CAS  Google Scholar 

  12. Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, G. Férey, Angew. Chem. Int. Ed. 47(22), 4144–4148 (2008)

    Article  CAS  Google Scholar 

  13. Y. Lin, H. Lin, H. Wang, Y. Suo, B. Li, C. Kong, J. Mater. Chem. A 2(35), 14658–14665 (2014)

    Article  CAS  Google Scholar 

  14. Q. Yan, Y. Lin, C. Kong, L. Chen, Chem. Commun. 49(61), 6873–6875 (2013)

    Article  CAS  Google Scholar 

  15. X. Zhou, W. Huang, J. Miao, Q. Xia, Z. Zhang, Chem. Eng. J. 266, 339–344 (2015)

    Article  CAS  Google Scholar 

  16. M. Aono, T. Takeno, T. Takagi, Diamond Relat. Mater. 63, 120–124 (2016)

    Article  CAS  Google Scholar 

  17. S. Fujita, H. Habuchi, S. Takagi, H. Takikawa, Diamond Relat. Mater. 65, 83–86 (2016)

    Article  CAS  Google Scholar 

  18. H. Liao, B. Zhang, L. Huang, D. Ma, Z. Jiao, Y. Xie, Prog. Org. Coat. 89, 35–41(2015)

    Article  CAS  Google Scholar 

  19. M. Xiong, Q. Rong, H. Meng, X. Zhang, Biosens. Bioelectron. 89, 212–223 (2017)

    Article  CAS  Google Scholar 

  20. H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, Electrochim. Acta 176, 28–35 (2015)

    Article  CAS  Google Scholar 

  21. S. Chen, A. Li, L. Zhang, J. Gong, Anal. Chim. Acta 896, 68–77 (2015)

    Article  CAS  Google Scholar 

  22. J. Xu, F. Wu, Q. Jiang, J.K. Shang, Y.X. Li, J. Mol. Catal. A 403, 77–83 (2015)

    Article  CAS  Google Scholar 

  23. H. Li, F.Q. Shao, H. Huang, J.J. Feng, A.J. Wang, Sens. Actuators B 226, 506–511 (2016)

    Article  CAS  Google Scholar 

  24. G. Mamba, A.K. Mishra, Appl. Catal. B 198, 347–377 (2016)

    Article  CAS  Google Scholar 

  25. K.S. Lakhi, W.S. Cha, S. Joseph, B.J. Wood, S.S. Aldeyab, Catal. Today 243, 209–217 (2015)

    Article  CAS  Google Scholar 

  26. Y. Sun, W. Ha, J. Chen, H. Qi, Y. Shi, Trends Anal. Chem 84, 12–21 (2016)

    Article  CAS  Google Scholar 

  27. J. Kim, Y.R. Lee, W.S. Ahn, Chem. Commun. 49(69), 7647–7649 (2013)

    Article  CAS  Google Scholar 

  28. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25(17), 10397–10401 (2009)

    Article  CAS  Google Scholar 

  29. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  30. D. Zhao, Y. Wan, W. Zhou, Structural Characterization Methods (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013). doi:10.1002/9783527647866.ch4

  31. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  32. M. Eddaoudi, Characterization of porous solids and powders: surface area, pore size and density. Particle Technology Series, S. Lowell (Quantachrome Instruments, Boynton Beach), J.E Shields (CW Post Campus of Long Island University), M.A Thomas, M. Thommes (Quantachrome In-struments) ed, Dordrecht, The Netherlands, (2005)

    Google Scholar 

  33. G. Li, F. Li, H. Yang, F. Cheng, N. Xu, W. Shi, P. Cheng, Inorg. Chem. Commun. 64, 63–66 (2016)

    Article  CAS  Google Scholar 

  34. X. Zhou, W. Huang, J. Shi, Z. Zhao, Q. Xia, Y. Li, H. Wang, J. Mater. Chem. A 2(13), 4722–4730 (2014)

    Article  CAS  Google Scholar 

  35. D.Y. Hong, Y.K. Hwang, C. Serre, G. Ferey, Adv. Funct. Mater. 19(10), 1537–1552 (2009)

    Article  CAS  Google Scholar 

  36. X. Sun, Q. Xia, Z. Zhao, Y. Li, Z. Li, Chem. Eng. J. 239, 226–232 (2014)

    Article  CAS  Google Scholar 

  37. S. H. Jhung, J.-H. Lee, J.W. Yoon, C. Serre, G. Férey, J.S. Chang, Adv. Mater. 19(1), 121–124 (2007)

    Article  CAS  Google Scholar 

  38. B. Boukoussa, F. Abidallah, Z. Abid, Z. Talha, N. Taybi, H. Sid El Hadj, R. Ghezini, R. Hamacha, A. Bengueddach, J. Mater. Sci. 52, 2460–2472 (2017)

    Article  CAS  Google Scholar 

  39. M. Anbia, V. Hoseini, J. Nat. Gas Chem. 21, 339–343 (2012)

    Article  CAS  Google Scholar 

  40. H. Sekkiou, B. Boukoussa, R. Ghezini, Z. Khenchoul, A. Ouali, R. Hamacha, A. Bengueddach, Mater. Res. Express 3(8), 085501 (2016)

    Article  Google Scholar 

  41. B. Boukoussa, F. Sebih, R. Hamacha, S. Bellahouel, A. Derdour, A. Bengueddach. Res. Chem. Intermed. 41, 2221–2233 (2015)

    Article  CAS  Google Scholar 

  42. B. Boukoussa, R. Hamacha, A. Morsli, A. Bengueddach, Arabian J. Chem. (2013). doi:10.1016/j.arabjc.2013.07.049

    Google Scholar 

  43. K. Chikh, B. Boukoussa, L. Bouhadjar, M. Bencheikh, R. Hamacha, R. Meghabar, M. Belbachir, A. Bengueddach. Res. Chem. Intermed. 41, 6485–6496 (2015)

    Article  CAS  Google Scholar 

  44. B. Boukoussa, S. Zeghada, G.B. Ababsa, R. Hamacha, A. Derdour, A. Bengueddach, F. Mongin, Appl. Catal. A 489, 131–139 (2015)

    Article  CAS  Google Scholar 

  45. B. Boukoussa, N. Aouad, R. Hamacha, A. Bengueddach, J. Phys. Chem. Solids 78, 78–83 (2015)

    Article  CAS  Google Scholar 

  46. I. Terrab, R. Ouargli, B. Boukoussa, K. Ghomari, R. Hamacha, R. Roy, A. Azzouz, A. Bengueddach, Res. Chem. Intermed. (2017). doi:10.1007/s11164-016-2846-7

    Google Scholar 

  47. H.R. Abid, Z.H. Rada, J. Shang, S. Wang, Polyhedron 120, 103–111 (2016)

    Article  CAS  Google Scholar 

  48. E.S. Sanz-Pérez, T.C.M. Dantas, A. Arencibia, G. Calleja, A.P.M.A. Guedes, A.S. Araujo, R. Sanz, Chem. Eng. J. 308, 1021–1033 (2017)

    Article  Google Scholar 

  49. N. Bouazizi, R. Ouargli, S. Nousir, R. Benslama, A. Azzouz, J. Phys. Chem. Solids 77, 172–177 (2015)

    Article  CAS  Google Scholar 

  50. N. Bouazizi, D. Barrimo, S. Nousir, R.B. Slama, R. Roy, A. Azzouz, Appl. Surf. Sci. 402, 314–322 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bouhadjar Boukoussa or Rachida Hamacha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argoub, A., Ghezini, R., Bachir, C. et al. Synthesis of MIL-101@g-C3N4 nanocomposite for enhanced adsorption capacity towards CO2 . J Porous Mater 25, 199–205 (2018). https://doi.org/10.1007/s10934-017-0433-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0433-y

Keywords

Navigation