Skip to main content
Log in

Porous calcium titanate and sorption and desorption of water under ambient conditions: a study by conventional and synchronous luminescence spectroscopy

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We report chemical synthesis and characterization of micro/mesoporous CaTiO3 by X-ray diffraction (XRD), nitrogen sorption/desorption, small angle XRD, diffuse reflectance optical spectroscopy, and luminescence spectroscopy under ambient conditions. We determined the energies of absorption and emission transitions through electronic midgap states in micro/mesoporous calcium titanate by optical spectroscopy, “conventional” photoluminescence (PL) spectroscopy and, for the first time, synchronous luminescence spectroscopy at 25 °C. Micro/mesoporous CaTiO3 reversibly sorbs and desorbs water vapor in ambient air, with water sorption capacity being close to the total pore volume. The luminescence of micro/mesoporous CaTiO3 in visible range at room temperature is repeatedly significantly increased upon desorption of water and decreased (quenched) upon sorption of water vapor in air, due to the interactions of the adsorbate with electronic surface midgap states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Liu, Y. Qu, R. Li, G.F. Wang, Y. Li, J. Mater. Res. 29, 1295 (2014)

    Article  CAS  Google Scholar 

  2. C. Jia, J. Gao, J. Li, F. Gu, G. Xu, Z. Zhong, F. Su, Catal. Sci. Technol. 3, 490 (2013)

    Article  CAS  Google Scholar 

  3. D. Zhang, M. Wang, G.J. Ren, E.J. Song, Mater. Sci. Eng. C 33, 4677 (2013).

    Article  CAS  Google Scholar 

  4. D. Zhang, S.Y. Liu, X. Song, Z.Y. Xu, B. Yang, L.Y. Chen, Y.C. Tan, F.J. Li, J. Adv. Oxid. Technol. 19, 9 (2016).

    CAS  Google Scholar 

  5. N. Raeis Hosseini, N.M. Sammes, J.S. Chung. J. Power Sources 245, 599 (2014)

    Article  CAS  Google Scholar 

  6. A. Krause, W. Weber, A. Jahn, K. Richter, D. Pohl, B. Rellinghaus, U. Schroder, J. Heitmann, T. Mikolajick, J. Vac. Sci. Technol. B 29, 01AC07 (2011).

    Article  Google Scholar 

  7. M.H. Sui, L. She, Front. Environ. Sci. Eng. 7, 795 (2013).

    Article  CAS  Google Scholar 

  8. F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun. 7, (2016)

  9. T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Chem. Soc. Rev. 42, 4036 (2013)

    Article  CAS  Google Scholar 

  10. F. Chang, J. Zhou, P. Chen, Y. Chen, H. Jia, S.M.I. Saad, Y. Gao, X. Cao, T. Zheng, Asia-Pac. J. Chem. Eng. 8, 618 (2013)

    Article  CAS  Google Scholar 

  11. D. Saha, C.I. Contescu, N.C. Gallego, Microporous Mesoporous Mater. 155, 71 (2012)

    Article  CAS  Google Scholar 

  12. D.H. Everett, Pure Appl. Chem. 31, 577 (1972)

    Article  Google Scholar 

  13. P. Nagpal, V.I. Klimov, Nat. Commun. 2, 486 (2011)

    Article  Google Scholar 

  14. T.D. Shen, I. Shmagin, C.C. Koch, R.M. Kolbas, Y. Fahmy, L. Bergman, R.J. Nemanich, M.T. McClure, Z. Sitar, M.X. Quan, Phys. Rev. B 55, 7615 (1997)

    Article  CAS  Google Scholar 

  15. A. Andrade-Eiroa, G. de-Armas, J.-M. Estela, V. Cerda, Trends Anal. Chem 29, 885 (2010)

    Article  CAS  Google Scholar 

  16. A. Andrade-Eiroa, G. de-Armas, J.-M. Estela, V. Cerda, Trends Anal. Chem. 29, 902 (2010)

    Article  CAS  Google Scholar 

  17. M. Moriyasu, Y. Yokoyama, S. Ikeda, J. Inorg. Nucl. Chem. 39, 2211 (1977).

    Article  CAS  Google Scholar 

  18. F. Wang, J. Wang, X. Liu, Angew. Chem. Int. Ed. 49, 7456 (2010)

    Article  CAS  Google Scholar 

  19. S.W. Buckner, R.L. Konold, P.A. Jelliss, Chem. Phys. Lett. 394, 400 (2004)

    Article  CAS  Google Scholar 

  20. J. Dai, M.L. McKee, A. Samokhvalov, J. Phys. Chem. C 119, 2491 (2015)

    CAS  Google Scholar 

  21. M. Demir, M.L. McKee, A. Samokhvalov, Adsorption 20, 829 (2014).

    Article  CAS  Google Scholar 

  22. J. Dai, M.L. McKee, A. Samokhvalov, J. Porous Mater. 21, 709 (2014)

    Article  CAS  Google Scholar 

  23. A. Chongterdtoonskul, J.W. Schwank, S. Chavadej. Catal. Lett. 142, 991 (2012)

    Article  CAS  Google Scholar 

  24. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, (Springer, New York, 2006)

  25. Y. Gu, K. Rabe, E. Bousquet, V. Gopalan, L.-Q. Chen, Phys. Rev. B 85, 064117 (2012)

    Article  Google Scholar 

  26. M. Yashima, R. Ali, Solid State Ion. 180, 120 (2009)

    Article  CAS  Google Scholar 

  27. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D 33, 912 (2000)

    Article  CAS  Google Scholar 

  28. G. Fagerlund, Matériaux et Construction 6, 239 (1973)

    Article  CAS  Google Scholar 

  29. M. Luisa Ojeda, J. Marcos Esparza, A. Campero, S. Cordero, I. Kornhauser, F. Rojas, PCCP 5, 1859 (2003).

    Article  CAS  Google Scholar 

  30. H. Liu, G.X. Wang, J. Liu, S.Z. Qiao, H.J. Ahn, J. Mater. Chem. 21, 3046 (2011)

    Article  CAS  Google Scholar 

  31. T. Alammar, I. Hamm, M. Wark, A.V. Mudring, Appl. Catal. B-Environ. 178, 20 (2015).

    Article  CAS  Google Scholar 

  32. A. Mitra, A. Bhaumik, B.K. Paul, Microporous Mesoporous Mater. 109, 66 (2008)

    Article  CAS  Google Scholar 

  33. F.C. Jentoft, Ultraviolet-visible-near infrared spectroscopy in catalysis: theory, experiment, analysis, and application under reaction conditions, in Advances in Catalysis, vol. 52, ed. by B.C. Gates, H. Knozinger (Elsevier Academic Press Inc, San Diego, 2009), p. 129

    Google Scholar 

  34. H.G. Hecht, J. Res. Natl Bur. Stand. 80 A, 567 (1976)

    Article  Google Scholar 

  35. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  36. J.B.M. Goodall, S. Kellici, D. Illsley, R. Lines, J.C. Knowles, J.A. Darr, RSC Adv. 4, 31799 (2014)

    Article  CAS  Google Scholar 

  37. J. Li, Y.C. Zhang, T.X. Wang, M. Zhang, Mater. Lett 65, 1556 (2011)

    Article  CAS  Google Scholar 

  38. H. Lee, T. Mizoguchi, T. Yamamoto, Y. Ikuhara, Mater. Trans. 50, 977 (2009).

    Article  CAS  Google Scholar 

  39. K. van Benthem, C. Elsässer, R.H. French, J. Appl. Phys. 90, 6156 (2001)

    Article  Google Scholar 

  40. X. Yong, M.A.A. Schoonen, Am. Miner. 85, 543 (2000)

    Article  Google Scholar 

  41. A.E. Souza, G.T.A. Santos, B.C. Barra, W.D. Macedo, S.R. Teixeira, C.M. Santos, A. Senos, L. Amaral, E. Longo, Cryst. Growth Des. 12, 5671 (2012)

    Article  CAS  Google Scholar 

  42. T. Vo-Dinh, Anal. Chem. 50, 396 (1978)

    Article  CAS  Google Scholar 

  43. G. Nag Bhargavi, A. Khare, Opt. Spectrosc. 118, 902 (2015).

    Article  CAS  Google Scholar 

  44. S.K. Sahu, P.S. Maram, A. Navrotsky, J. Am. Ceram. Soc. 96, 3670 (2013)

    Article  CAS  Google Scholar 

  45. J.C. Moı̈se, J.P. Bellat, A. Méthivier, Microporous Mesoporous Mater. 43, 91 (2001)

    Article  Google Scholar 

  46. S.H. Huo, X.P. Yan, J. Mater. Chem 22, 7449 (2012)

    Article  CAS  Google Scholar 

  47. A. Samokhvalov, Chem. Eur. J 21, 16726 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.S. thanks Dr. Dmitri Barbash from Drexel University Core Facilities for access to the XRD instrument. A. A. thanks Rutgers University Camden for her Dean’s Graduate Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Samokhvalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, A., Samokhvalov, A. Porous calcium titanate and sorption and desorption of water under ambient conditions: a study by conventional and synchronous luminescence spectroscopy. J Porous Mater 24, 1145–1154 (2017). https://doi.org/10.1007/s10934-016-0354-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0354-1

Keywords

Navigation