Skip to main content
Log in

Preparation of structured meso–macroporous silica materials: influence of composition variables on material characteristics

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Meso–macroporous silica materials with a well-ordered array of mesopores were prepared from oil-in-water emulsions. The influence of the following three composition variables on material characteristics was studied: the dispersed phase fraction of the emulsion, the concentration of silica used and the concentration of surfactant. The obtained materials were characterized via small-angle X-ray diffraction scattering, scanning electron microscopy, transmission electron microscopy, Hg intrusion porosimetry and nitrogen adsorption–desorption isotherms. A network of structured mesopores was obtained even when using a highly concentrated emulsion (volume of the disperse phase, ϕ ≥ 0.75). The mesopores network presented a hexagonal arrangement, with mesopore diameters between 4 and 7 nm. Non-ordered macropores, with diameters between 50 nm and 10–15 μm were also present, depending on composition variables. The isotherms were of type IV, typical of mesoporous materials, but at high p/p0 they were the usual shape for the macroporous materials. The possibility of tailoring mesopore and macropore structures by altering in composition variables could extend the application of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Klein, Sol–gel technology (Noyes, Park Ridge, 1988)

    Google Scholar 

  2. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  3. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCulle, J.B. Higgins, J.L. Schlender, Anew family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  4. Y. Wan, D. Zhao, On the controllable soft templating approach to mesoporous silicates. Chem. Rev. 107, 2821 (2007)

    Article  CAS  Google Scholar 

  5. S.-T. Wang, M.-L. Chen, Y.-Q. Feng, A meso–macroporous borosilicate monoliths prepared by a sol–gel method. Microporous Mesoporous Mater. 151, 250–252 (2012)

    Article  CAS  Google Scholar 

  6. A. Khaleel, S. Al-Mansouri, Meso–macroporous g-alumina by tenplate-free sol–gel synthesis: the effect of the solvent and acid catalyst on the microstructure and textural properties. Colloids Surf A: Physicochem. Eng. Asp 369, 272–280 (2010)

    Article  CAS  Google Scholar 

  7. A. Lemaire, B.L. Su, Highly spongy hierarchical structured meso–macroporous aluminosilicates with high tetrahedral aluminum content and 3D interconnectivity from a single-source molecular precursor (sec-BuO)2–Al–O–Si(OEt)3: effect of silicon co-reactant. Microporous Mesoporous Mater. 142, 70–81 (2011)

    Article  CAS  Google Scholar 

  8. Z.Y. Yuan, B.L. Su, Insights into hierarchically meso–macroporous structured materials. J. Mater. Chem. 16, 663 (2006)

    Article  CAS  Google Scholar 

  9. P. Diddams, Inorganic supports and catalysts (Ellis Horwood, New York, 1992)

    Google Scholar 

  10. J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. Engl. 38, 56–77 (1999)

    Article  CAS  Google Scholar 

  11. Z.Y. Yuan, T.-Z. Ren, A. Vantomme, B.-L. Su, Facile and generalized preparation of hierarchically mesoporous–macroporous binary metal oxide materials. Chem. Mater. 16, 5096–5106 (2004)

    Article  CAS  Google Scholar 

  12. C. Groen, W. Zhu, S. Brouwer, S.J. Huynink, F. Kapteijn, J.A. Moulijn, J. Pérez-Ramírez, Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J. Am. Chem. Soc. 129, 355–360 (2007)

    Article  CAS  Google Scholar 

  13. A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion templating. Nature 389(30), 948 (1997)

    CAS  Google Scholar 

  14. J. Esquena, C. Solans, N. Azemar, Highly concentrated (gel) emulsions, versatile reaction media. Curr. Opin. Colloid Interface Sci. 8, 156–163 (2003)

    Article  Google Scholar 

  15. R. Pal, Yield stress and viscoelastic properties of high internal phase ratio emulsions. Colloid Polym. Sci. 277, 583–588 (1999)

    Article  CAS  Google Scholar 

  16. P.A. Reynolds, E.P. Gilbert, J.W. White, High internal phase water-in-oil emulsions studied by small angle neutron scattering. J. Phys. Chem. B 104, 7012–7022 (2000)

    Article  CAS  Google Scholar 

  17. J.M. Williams, High internal phase water-in-oil emulsions: influence of surfactants and cosurfactants on emulsion stability and foam quality. Langmuir 7, 1370–1377 (1991)

    Article  CAS  Google Scholar 

  18. G. Ebert, G. Platz, H. Rehage, Ber. Bunsen-Ges. 92, 1158 (1988)

    Article  CAS  Google Scholar 

  19. V.G. Babak, M.J. Stébé, Highly concentrated emulsions: physicochemical principles of formulation. J. Dispers. Sci. Technol. 23, 1–22 (2002)

    Article  CAS  Google Scholar 

  20. F. Sebba, Foams and biliquid foams (Wiley, New York, 1987)

    Google Scholar 

  21. O. Sonneville-Aubrun, V. Bergeron, T. Gulik-Krzywicki, B. Joensson, H. Wennerstrom, P. Lindner, B. Cabane, Surfactant films in biliquid foams. Langmuir 16, 1566 (2000)

    Article  CAS  Google Scholar 

  22. T.D. Dimitrova, F. Leal-Calderon, Bulk elasticity of concentrated protein-stabilized emulsions. Langmuir 17, 3235 (2001)

    Article  CAS  Google Scholar 

  23. G.L. Lye, D.C. Stucky, Structure and stability of colloidal liquid aphrons. Colloids Surf. A 131, 119 (1998)

    Article  CAS  Google Scholar 

  24. R. Pal, Rheology of high internal phase ratio emulsions. Food Hydrocoll. 20, 997–1005 (2006)

    Article  CAS  Google Scholar 

  25. A. Imhof, D.J. Pine, Uniform macroporous ceramics and plastics by emulsion templating. Chem. Eng. Technol. 21(8), 682–685 (1998)

    Article  CAS  Google Scholar 

  26. H. Zhang, G.C. Hardy, M.J. Rosseinsky, A.I. Copper, Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity. Adv. Mater. 15, 78 (2003)

    Article  CAS  Google Scholar 

  27. B.P. Binks, Macroporous silica from solid-stabilized emulsion templates. Adv. Mater. 14, 1824–1827 (2002)

    Article  CAS  Google Scholar 

  28. C. Oh, S.C. Chung, S.I. Shin, Y.C. Kim, S.S. Im, S.G. Oh, Distribution of macropores in silica particles prepared by using multiple emulsions. J. Colloids Interface Sci. 254, 79–86 (2002)

    Article  CAS  Google Scholar 

  29. C. Zhao, E. Danish, N.R. Cameron, R. Kataku, Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport: applications in electrochemical sensing. J. Mater. Chem. 17, 2446 (2007)

    Article  CAS  Google Scholar 

  30. S. Zhang, J. Chen, Synthesis of open porous emulsion templated monoliths using cetyltrimethylammonium bromide. Polymer 48, 3021–3025 (2007)

    Article  CAS  Google Scholar 

  31. M.J. Stébé, J.L. Blin, J. Grignard, K. Zimmy, Investigation of the C16(EO)10/decane/water system for the design of porous silica materials. Colloids Surf. A: Physicochem. Eng. Asp. 308, 71 (2007)

    Google Scholar 

  32. J.F. Brown, P. Krajnc, N.R. Cameron, PolyHIPE supports in batch and flow through Suzuki cross-coupling reactions. Ind. Eng. Chem. Res. 44, 8565 (2005)

    Article  CAS  Google Scholar 

  33. M.S. Silverstein, H. Tai, A. Sergienko, Y. Lumelsky, S. Pavlosky, PolyHIPE: IPNs hybrids, nanosclae porosity, silica monolitos and ICP-based sensors. Polymer 46, 6682 (2005)

    Article  CAS  Google Scholar 

  34. G. Akay, M.A. Birch, M.A. Bohkari, Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials 25, 3991 (2004)

    Article  CAS  Google Scholar 

  35. F. Carn, A. Collin, M.F. Achard, H. Deleuze, E. Sellier, M. Birot, R. Backov, Inorganic monoliths hierarchically textured via concentrated direct emulsions and micelle templates. J. Mater. Chem. 14, 255 (2005)

    Google Scholar 

  36. G.J.T. Tiddy, T. Sten, J.L. Casci, M.W. Anderson, Meso-cellular silica foams, macrocellular silica foams and mesoporous solids: a study of emulsion mediated synthesis. Microporous Mesoporous Mater. 78, 255 (2005)

    Article  Google Scholar 

  37. G.J.T. Tiddy, T. Sten, J.L. Casci, M.W. Anderson, Macrocellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion. Chem Commun. 2182 (2003)

  38. J.M. Kim, G.D. Stucky, Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers. Chem. Commun. 1159–1160 (2000)

  39. M. Impéror-Clerc, S. Manet, A. Lecchi, V. Zholobenko, D. Durand, C.L.P. Oliveira, J.S. Pedersen, I. Grillo, F. Meneau, C. Rochas, J. Phys. Chem. B 115, 11318–11329 (2011)

    Article  Google Scholar 

  40. M. Impéror-Clerc, V.L. Zholobenko, A.Y. Khodakov, D. Durand, I. Grillo, Adv. Colloid Interface Sci. 142, 67–74 (2008)

    Article  Google Scholar 

  41. A. Firouzi, D. Kumar, L.M. Bull, T. Beiser, P. Sieger, Q. Huo, S.S. Walker, J.A. Zasadzinski, C. Glinka, G.D. Stucky, Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267, 1138–1143 (1995)

    Article  CAS  Google Scholar 

  42. Y.S. Lee, D. Sujardi, J.F. Rathman, Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates. Langmuir 12, 6202–6210 (1996)

    Article  CAS  Google Scholar 

  43. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distribution in porous substances. Computations and nitrogen isotherms. J. Am. Chem. Soc. 73, 31 (1951)

    Article  Google Scholar 

  44. N. Du, M.J. Stébé, R. Bleta, J.L. Blin, Preparation and characterization of porous silica templated by a nonionic fluorinated systems. Colloids Surf. A: Physicochem. Eng. Asp. 357, 116–127 (2010)

    Article  CAS  Google Scholar 

  45. M.J. Stébé, J.L. Blin, R. Bleta, J. Ghanbaja, Fluorinated emulsions: templates for the direct preparation of macropores–mesoporous silica with a highly ordered array of large mesoporous. Microporous Mesoporous Mater. 94, 74–80 (2006)

    Article  Google Scholar 

  46. E.M. Johansson, M.A. Ballem, J.M. Córdoba, M. Odén, Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores. Langmuir 27, 4994–4999 (2011)

    Article  CAS  Google Scholar 

  47. E.M. Johansson, M.A. Ballem, J.M. Córdoba, M. Odén, Microporous Mesoporous Mater. 133, 66–74 (2010)

    Article  CAS  Google Scholar 

  48. S. Brunauer, L.S. Deming, W.S. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)

    Article  CAS  Google Scholar 

  49. M.J. Stébé, F. Michaux, J.L. Blin, Systematic investigation of the synthesis parameters driving the preparation of mesoporous materials using a nonionic fluorinated surfactant. Microporous Mesoporous Mater. 151, 201–210 (2012)

    Article  Google Scholar 

  50. G. Schulz-Ekloff, J. Rathousky, A. Zukal, Controlling of morphology and characterization of pore structure of ordered mesoporous silicas. Microporous Mesoporous Mater. 27, 273–285 (1999)

    Article  CAS  Google Scholar 

  51. M.J. Stébé, J.L. Blin, Effect of fluorocarbon addition on the structure and pore diameter of mesoporous materials prepared with a fluorinated surfactant. Microporous Mesoporous Mater. 87, 67–76 (2005)

    Article  Google Scholar 

  52. M.J. Stébé, N. Du, J.L. Blin, Effect of hydrocarbon incorporation in the R H12 A(EO)9 system: preparation of porous materials. Microporous Mesoporous Mater. 135, 149–160 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from CYCYT CTQ2011-29336-C03-02 is gratefully acknowledged. We also thank to the Spanish Consejo Superior de Investigaciones Científicas (CSIC) for the SAXS measurements. Mrs. María Martínez and Dr. Jordi Esquena for their advice on the SAXS results and Mr. Jonathan Miras for the nitrogen adsorption–desorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Santamaría.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamaría, E., Maestro, A., Porras, M. et al. Preparation of structured meso–macroporous silica materials: influence of composition variables on material characteristics. J Porous Mater 21, 263–274 (2014). https://doi.org/10.1007/s10934-013-9771-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9771-6

Keywords

Navigation