Skip to main content
Log in

CO2 retention ability on alkali cation exchanged titanium silicate, ETS-10

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

ETS-10 was ion exchanged by various alkali cations (Li+, Na+, K+, Rb+ and Cs+) and the BET surface area and pore volume was exactly consistent with cationic size; that is, in the order of Li+ > Na+ > K+ > Rb+ > Cs+. It was observed that a single point adsorption capacity was inversely proportional to cationic size. The largest CO2 capacity was observed for Li+-ETS-10 and it is attributed to greater cation–quadrupole interactions with CO2 than larger cation. The results also suggests that as the CO2 loading is increased, the accessibility of adsorbing CO2 to framework basic O sites should have become difficult with the increase in cationic size due to the blocking effect by extra-framework CO2-M+. The slight decrease in the slope of adsorption capacity with temperature, especially beyond 373 K for Li+-ETS-10 and K+-ETS-10 suggests that the adsorption of CO2 on small alkali cation exchanged-ETS-10 at high temperature is somewhat associated with basic oxygen anion sites in framework due to the existence of large pore. The CO2-TPD results show that the amount of desorbed CO2 at higher temperature was proportionally increased due to the increased basicity of oxygen anions in framework. It also shows that the desorption temperature associated with alkali cations in extra-framework (corresponding to low temperature desorption peak) has been lowered with the increase in cationic size, indicating weak cation–quadrupole interactions with CO2 for larger cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Van Bekkum, E.M. Flanigen, P.A. Jacobs, J. Jansen, Introduction to Zeolites Science and Practice. Studies in Surface Science and Catalysis, vol. 137 (Elsevier, 2001)

  2. R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Energy Fuels 15, 279 (2001)

    Article  CAS  Google Scholar 

  3. R. Kikuchi, Energy Environ. 14, 383 (2003)

    Article  Google Scholar 

  4. E. Diaz, E. Munoz, A. Vega, S. Ordonez, Ind. Eng. Chem. Res. 47, 412 (2008)

    Article  CAS  Google Scholar 

  5. J. Davison, K. Thanbimuth, in Proceedings of the 7th International Conference on Greenhouse, Gas Control Technologies, vol. 1, Vancouver, Canada, ed. by E.S. Rubin, D.W. Keith, C.F. Gilboy (Elsevier, 2004)

  6. H.H. Khoo, R.B.H. Tan, Environ. Sci. Technol. 40, 4116 (2006)

    Article  Google Scholar 

  7. X.C. Xu, C. Song, J.M. Andersen, B.G. Miller, A.W. Scaroni, Microporous Mesoporous Mater. 62, 29 (2003)

    Article  CAS  Google Scholar 

  8. M. Przepiorski, M. Skrodzewicz, A.W. Morawski, Appl. Surf. Sci. 225, 235 (2004)

    Article  CAS  Google Scholar 

  9. K.B. Lee, A. Verdooren, H.S. Caram, S. Sicar, J. Colloid Interface Sci. 308, 30 (2007)

    Article  CAS  Google Scholar 

  10. H.K. Song, K.H. Lee, Sep. Sci. Technol. 33, 13–2039 (1998)

    Google Scholar 

  11. Z. Yong, V. Mata, A.E. Rodrigues, Adsorption 7(1), 41 (2001)

    Article  CAS  Google Scholar 

  12. V.P. Shiralkar, S.B. Kulkarni, Zeolites 4, 329 (1984)

    Article  CAS  Google Scholar 

  13. V.P. Shiralkar, S.B. Kulkarni, Zeolites 5, 37 (1985)

    Article  CAS  Google Scholar 

  14. D. Amari, J.M. Lopez Cuesta, N.P. Nguyen, R. Jerrentrup, J.L. Ginoux, J. Therm. Anal. 38, 1005 (1992)

    Article  CAS  Google Scholar 

  15. P.N. Joshi, V.P. Shiralkar, J. Phys. Chem. 97, 619 (1993)

    Article  CAS  Google Scholar 

  16. J.A. Dunne, M. Rao, S. Sicar, R.J. Gorte, A.L. Myers, Langmuir 12, 5896 (1996)

    Article  CAS  Google Scholar 

  17. D. Shen, M. Bulow, Microporous Mesoporous Mater. 22, 237 (1998)

    Article  CAS  Google Scholar 

  18. Z.M. Wang, T. Arai, M. Kumagi, Energy Fuels 12, 1055 (1998)

    Article  CAS  Google Scholar 

  19. Y. Zou, A.E. Rodrigues, Adsorpt. Sci. Technol. 19, 255 (2001)

    Article  CAS  Google Scholar 

  20. A.L. Pulin, A.A. Fomkin, V.A. Sinitsyn, A.A. Pribylov, Russ. Chem. Bull. Int. Ed. 50, 60 (2001)

    Article  CAS  Google Scholar 

  21. J.S. Lee, J.H. Km, J.T. Suh, J.M. Lee, C.H. Lee, J. Chem. Eng. Data 47, 1237 (2002)

    Article  CAS  Google Scholar 

  22. R.V. Siriwardane, M.S. Shen, E.P. Fisher, Energy Fuels 17, 571 (2003)

    Article  CAS  Google Scholar 

  23. K.S. Walton, M.B. Abney, M.D. Levan, Microporous Mesoporous Mater. 91, 78 (2006)

    Article  CAS  Google Scholar 

  24. O. Talu, S.Y. Zhang, D.T. Hayhurst, J. Phys. Chem. 97, 12894 (1993)

    Article  CAS  Google Scholar 

  25. D. Barthomeuf, Microporous Mesoporous Mater. 66, 1 (2003)

    Article  CAS  Google Scholar 

  26. D. Barthomeuf, J. Phys. Chem. 88, 42 (1984)

    Article  CAS  Google Scholar 

  27. B.S. Waghmode, R. Vetrivel, S.G. Hegde, C.S. Gopinath, S. Sivasanker, J. Phys. Chem. B 107, 8517 (2003)

    Article  CAS  Google Scholar 

  28. S.H. Noh, S.D. Kim, Y.J. Jung, J.W. Park, D.K. Moon, D.T. Hayhurst, W.J. Kim, Microporous Mesoporous Mater. 88, 197 (2006)

    Article  CAS  Google Scholar 

  29. P.D. Jadhav, R.V. Chatti, R.B. Biniwale, N.K. Labhsetwar, S. Devotta, S.S. Rayalu, Energy Fuels 21, 3555 (2007)

    Article  CAS  Google Scholar 

  30. B. Bonelli, B. Civaller, B. Fubini, P. Ugliengo, C.O. Arean, E. Garrone, J. Phys. Chem. B 104, 10978 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Carbon Dioxide Reduction & Sequestration R&D Center (CDRS), one of the 21st Century Frontier R&D Programs in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.W., Yun, Y.H., Kim, S.D. et al. CO2 retention ability on alkali cation exchanged titanium silicate, ETS-10. J Porous Mater 17, 589–595 (2010). https://doi.org/10.1007/s10934-009-9328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9328-x

Keywords

Navigation