Skip to main content
Log in

Surface free energies and steam stability of methyl-modified silica membranes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Methyl-modified silica membranes have been prepared by acid-catalyzed co-hydrolysis and condensation reactions of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES). The surface wettability, micro-structure and gas permeance of the methyl-modified silica membranes were investigated. The values of dispersion force γ dS , dipole force γ PS and hydrogen bonding force γ hS to the surface tensions for the silica membranes were evaluated by the extended Fowkes equation. The surface free energy and surface wettability of the silica membranes decrease greatly with the increasing of MTES/TEOS ratio mainly because of the contribution of hydrogen bonding force. FTIR analysis shows that the reason is the increase of Si–CH3 group amount and the decrease of O–H group amount on the surfaces of silica membranes. After aging in steam circumstances, the increase of surface free energies results from the increase of O–H amount present on the silica membrane surfaces. The methyl ligands can make the mean pore size and total pore volume of silica membrane larger. Compared with the unmodified silica membrane, the gas permselectivities of the MTES-modified silica membranes have no obvious decrease in despite of the greatly increase of gas permeation rates. As the silica membranes are aged in steam circumstances, the decrease of gas permeation rates in the silica membrane with MTES/TEOS = 0 is far more than that in the silica membrane with MTES/TEOS = 0.8 while their H2/CO2 selectivities have no notable change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Gopalakrishnan, M. Nomura, T. Sugawara, S. Nakao, Desalination 193, 230 (2006). doi:10.1016/j.desal.2005.10.021

    Article  CAS  Google Scholar 

  2. M. Kanezashi, M. Asaeda, J. Memb. Sci. 271, 86 (2006). doi:10.1016/j.memsci.2005.07.011

    Article  CAS  Google Scholar 

  3. S. Araki, N. Mohri, Y. Yoshimitsu, Y. Miyake, J. Memb. Sci. 290, 138 (2007). doi:10.1016/j.memsci.2006.12.034

    Article  CAS  Google Scholar 

  4. M.C. Duke, J.C. Diniz da Costa, G.Q. (Max) Lu, M. Petch, P. Gray, J. Memb. Sci. 241, 325 (2004). doi:10.1016/j.memsci.2004.06.004

    Article  CAS  Google Scholar 

  5. J.H. Moon, J.H. Bae, Y.S. Bae, J.T. Chung, C.H. Lee, J. Memb. Sci. 318, 45 (2008). doi:10.1016/j.memsci.2008.02.001

    Article  CAS  Google Scholar 

  6. C.Y. Tsai, S.Y. Tam, Y. Lu, C.J. Brinker, J. Memb. Sci. 169, 255 (2000). doi:10.1016/S0376-7388(99)00343-9

    Article  CAS  Google Scholar 

  7. R.M. de Vos, H. Verweij, J. Memb. Sci. 143, 37 (1998). doi:10.1016/S0376-7388(97)00334-7

    Article  Google Scholar 

  8. S.I. Nakao, T. Suzuki, T. Sugawara, T. Tsuru, S. Kimura, Microporous Mesoporous Mater. 37, 145 (2000). doi:10.1016/S1387-1811(99)00261-9

    Article  CAS  Google Scholar 

  9. B.N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, S.I. Nakao, J. Memb. Sci. 135, 237 (1997). doi:10.1016/S0376-7388(97)00137-3

    Article  CAS  Google Scholar 

  10. R.M. de Vos, H. Verweij, Science 279, 1710 (1998). doi:10.1126/science.279.5357.1710

    Article  Google Scholar 

  11. S. Yan, H. Maseda, K. Kusakabe, S. Morooka, Ind. Eng. Chem. Res. 33, 2096 (1994). doi:10.1021/ie00033a011

    Article  CAS  Google Scholar 

  12. B. Singh, A.C. Sheth, N.B. Dahotre, Appl. Surf. Sci. 253, 1247 (2006). doi:10.1016/j.apsusc.2006.01.079

    Article  CAS  Google Scholar 

  13. Y. Li, H. Zhou, G. Zhu, J. Liu, W. Yang, J. Memb. Sci. 297, 10 (2007). doi:10.1016/j.memsci.2007.03.041

    Article  CAS  Google Scholar 

  14. M. Kanezashi, J. O’Brien, Y.S. Lin, Microporous Mesoporous Mater. 103, 302 (2007). doi:10.1016/j.micromeso.2007.02.019

    Article  CAS  Google Scholar 

  15. L. Zhang, X. Chen, C. Zeng, N. Xu, J. Memb. Sci. 281, 429 (2006). doi:10.1016/j.memsci.2006.04.011

    Article  CAS  Google Scholar 

  16. H.B. Park, I.Y. Suh, Y.M. Lee, Chem. Mater. 14, 3034 (2002). doi:10.1021/cm020216v

    Article  CAS  Google Scholar 

  17. J.N. Barsema, J. Balster, V. Jordan, N.F.A. van der Vegt, M. Wessling, J. Memb. Sci. 219, 47 (2003). doi:10.1016/S0376-7388(03)00176-5

    Article  CAS  Google Scholar 

  18. D. Lee, L. Zhang, S.T. Oyama, S. Niu, R.F. Saraf, J. Memb. Sci. 231, 117 (2004). doi:10.1016/j.memsci.2003.10.044

    Article  CAS  Google Scholar 

  19. A.P. Rao, A.V. Rao, G.M. Pajonk, Appl. Surf. Sci. 253, 6032 (2007). doi:10.1016/j.apsusc.2006.12.117

    Article  CAS  Google Scholar 

  20. Y. Iwamoto, K. Sato, T. Kato, T. Inada, Y. Kubo, J. Eur. Ceram. Soc. 25, 257 (2005). doi:10.1016/j.jeurceramsoc.2004.08.007

    Article  CAS  Google Scholar 

  21. M. Nomura, K. Ono, S. Gopalakrishnan, T. Sugawara, S.I. Nakao, J. Memb. Sci. 251, 151 (2005). doi:10.1016/j.memsci.2004.11.008

    Article  CAS  Google Scholar 

  22. A.V. Rao, N.D. Hegde, P.M. Shewale, Appl. Surf. Sci. 253, 4137 (2007). doi:10.1016/j.apsusc.2006.12.117

    Article  Google Scholar 

  23. V. Rouessac, P. Ferreira, J. Durand, Sep. Purif. Technol. 32, 37 (2003). doi:10.1016/S1383-5866(03)00039-X

    Article  CAS  Google Scholar 

  24. F. Wang, J. Liu, Z. Luo, Q. Zhang, P. Wang, X. Liang, C. Li, J. Chen, J. Non-Cryst. Solids 353, 321 (2007). doi:10.1016/j.jnoncrysol.2006.05.033

    Article  CAS  Google Scholar 

  25. B. Zhou, J. Shen, Y.H. Wu, G.M. Wu, X.Y. Ni, Mater. Sci. Eng. C 27, 1291 (2007). doi:10.1016/j.msec.2006.06.032

    Article  CAS  Google Scholar 

  26. R.M. De Vos, W.F. Maier, H. Verweij, J. Memb. Sci. 158, 277 (1999). doi:10.1016/S0376-7388(99)00035-6

    Article  Google Scholar 

  27. Y. Gu, P. Hacarlioglu, S. Ted Oyama, J. Memb. Sci. 310, 28 (2008). doi:10.1016/j.memsci.2007.10.025

    Article  CAS  Google Scholar 

  28. K. Yoshida, Y. Hirano, H. Fujii, T. Tsuru, M. Asaeda, J. Chem. Eng. Jpn. 34, 523 (2001). doi:10.1252/jcej.34.523

    Article  CAS  Google Scholar 

  29. S.W. Nam, H.Y. Ha, S.P. Yoon, J. Han, T.H. Lim, I.H. Oh, S.A. Hong, J. Korean Memb. 3, 69 (2001)

    CAS  Google Scholar 

  30. M. Kanezashi, T. Fujita, M. Asaeda, Sep. Sci. Technol. 40, 225 (2005). doi:10.1081/SS-200041989

    Article  CAS  Google Scholar 

  31. M. Kanezashi, T. Yoshioka, T. Tsuru, M. Asaeda, Trans. Mater. Res. Soc. Jpn. 29, 3267 (2004)

    CAS  Google Scholar 

  32. V. Boffa, D.H.A. Blank, J.E. ten Elshof, J. Memb. Sci. 319, 256 (2008). doi:10.1016/j.memsci.2008.03.042

    Article  CAS  Google Scholar 

  33. M. Nomura, H. Aida, S. Gopalakrishnan, T. Sugawara, S. Nakao, S. Yamazaki, T. Inada, Y. Iwamoto, Desalination 193, 1 (2006). doi:10.1016/j.desal.2005.08.019

    Article  CAS  Google Scholar 

  34. M. Nomura, M. Seshino, H. Aida, K. Nakatani, S. Gopalakrishnan, T. Sugawara, T. Ishikawa, M. Kawamura, S. Nakao, Ind. Eng. Chem. Res. 45, 3950 (2006). doi:10.1021/ie051345z

    Article  CAS  Google Scholar 

  35. S. Giessler, L. Jordan, J.C. Diniz da Costa, G.Q.M. Lu, Sep. Purif. Technol. 32, 255 (2003). doi:10.1016/S1383-5866(03)00069-8

    Article  CAS  Google Scholar 

  36. S. Štandeker, Z. Novak, Ž. Knez, J. Coll. Interf. Sci. 310, 362 (2007). doi:10.1016/j.jcis.2007.02.021

    Article  Google Scholar 

  37. H.L. Castricum, M.C. Mittelmeijer-Hazeleger, A. Sah, J.E. Elshof, Microporous Mesoporous Mater. 88, 63 (2006). doi:10.1016/j.micromeso.2005.08.033

    Article  CAS  Google Scholar 

  38. A.V. Rao, D. Haranath, Microporous Mesoporous Mater. 30, 267 (1999). doi:10.1016/S1387-1811(99)00037-2

    Article  CAS  Google Scholar 

  39. J.C.D. da Costa, G.Q. Lu, V. Rudolph, Colloids. Surf. A Physicochem. Eng. Asp. 179, 243 (2001). doi:10.1016/S0927-7757(00)00644-0

    Article  CAS  Google Scholar 

  40. S.D. Bhagat, Y.H. Kim, Y.S. Ahn, Appl. Surf. Sci. 253, 2217 (2006). doi:10.1016/j.apsusc.2006.04.030

    Article  CAS  Google Scholar 

  41. Y. Xu, D. Wu, Y.H. Sun, Z.H. Li, B.Z. Dong, Z.H. Wu, J. Non-Cryst. Solids 351, 258 (2005). doi:10.1016/j.jnoncrysol.2004.11.011

    Article  CAS  Google Scholar 

  42. S. Lee, Y.C. Cha, H.J. Hwang, J.W. Moon, I.S. Han, Mater. Lett. 61, 3130 (2007). doi:10.1016/j.matlet.2006.11.010

    Article  CAS  Google Scholar 

  43. H. Jiang, Z. Zheng, X. Wang, Vib. Spectrosc. 46, 1 (2008). doi:10.1016/j.vibspec.2007.07.002

    Article  CAS  Google Scholar 

  44. K. Kamiya, A. Katayama, H. Suzuki, K. Nishida, T. Hashimoto, J. Matsuoka, H. Nasu, J. Sol-Gel Sci. Technol. 14, 95 (1999). doi:10.1023/A:1008784032647

    Article  CAS  Google Scholar 

  45. K. Yamaishi, H. Kumazawa, H. Sanuki, J. Fiber Inst. Jpn. 32, 65 (1976)

    Google Scholar 

  46. C. Jie-Rong, W. Xue-Yan, W. Tomiji, Appl. Polym. Sci. 72, 1327 (1999). doi:10.1002/(SICI)1097-4628(19990606)72:10<1327::AID-APP13>3.0.CO;2-0

    Article  CAS  Google Scholar 

  47. H. Zhang, D. Simpson, S. Kumar, R.S.C. Smart, Colloids Surf. A Physicochem. Eng. Asp. 291, 128 (2006). doi:10.1016/j.colsurfa.2006.07.057

    Article  CAS  Google Scholar 

  48. Y. Kitazaki, T. Hata, J. Adhes. Inst. Jpn. 8, 131 (1972)

    CAS  Google Scholar 

  49. C. Wang, J.R. Chen, Appl. Surf. Sci. 253, 4599 (2007). doi:10.1016/j.apsusc.2006.10.014

    Article  CAS  Google Scholar 

  50. R.S.A. de Lange, K. Keizer, A.J. Burggraaf, J. Memb. Sci. 104, 81 (1995). doi:10.1016/0376-7388(95)00014-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural and Science Foundation Council of China 30571636 and 20877062, the Natural Science Foundation of Shanxi Province Education Office 05JK208, the Basic Research Foundation of Xi’an Polytechnic University XGJ08002 and the Doctoral Program of Higher Education of China 20060698002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jierong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Chen, J. Surface free energies and steam stability of methyl-modified silica membranes. J Porous Mater 16, 737–744 (2009). https://doi.org/10.1007/s10934-008-9256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9256-1

Keywords

Navigation