Skip to main content

Advertisement

Log in

Faunal (Chironomidae, Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Present climate warming strongly affects limnological and ecological properties of lakes and may cause regime shifts that alter structure and function in the water bodies. Such effects are especially pronounced in climatologically extreme areas, e.g. at high altitudes. We examined a sediment core from Lake Oberer Landschitzsee, Austrian Alps, which spans the period from the Little Ice Age (LIA) to present. We investigated whether post-LIA climate warming altered aquatic invertebrate communities and limnological status in this sensitive high Alpine lake. Fossil Cladocera (Crustacea) and Chironomidae (Diptera) and organic matter in the core were analyzed. Chironomids were used to assess the lake’s benthic quality (i.e. oxygen availability). An instrumental Alpine temperature record was used to assess whether changes in the biotic assemblages correspond to post-LIA temperature trends. The planktonic and macro- and microbenthic invertebrate communities exhibit almost complete and simultaneous species turnover after the LIA, from about AD 1850 onward, when Sergentia coracina-type replaced oxyphilous Micropsectra contracta-type as the dominant macrobenthic taxon, and phytophilous Acroperus harpae outcompeted Alona affinis and Alona quadrangularis in the microbenthos. These directional community shifts corresponded with a period of reduced benthic quality, higher sediment organic content, and progressive climate warming, superimposed on Alpine land-use changes, until the early twentieth century. Detected changes suggest increased productivity and lower benthic oxygen availability. Faunal shifts were even more pronounced during the late twentieth century, simultaneous with enhanced warming. A new planktonic Cladocera species, Bosmina longirostris, typically absent from high Alpine lakes, colonized the lake and gradually became dominant toward the core top. Results show that post-LIA climate warming, coupled with increasing benthic and planktonic production, substantially altered the limnological and ecological status of this remote Alpine lake. Observed faunal turnovers provide evidence that temperature-driven ecological thresholds, whether associated directly or indirectly with greater human activity, have been crossed. Species abundances and distributions have changed in response to post-LIA and late twentieth century climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Volume 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordcrect, pp 171–203

    Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M (2006) Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–171

    Article  Google Scholar 

  • Brodersen KP, Quinlan R (2006) Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012

    Article  Google Scholar 

  • Brönmark C, Hansson L-A (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–306

    Article  Google Scholar 

  • Brooks SJ (2006) Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, composition of plankton. Science 150:28–35

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London, UK

  • Chen G, Dalton C, Taylor D (2010) Cladocera as indicators of trophic state in Irish lakes. J Paleolimnol 44:465–481

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petr 44:242–248

    Google Scholar 

  • Eggermont H, Heiri O (2012) The chironomid-temperature relationship: express in nature and palaeoenvironmental implications. Biol Rev 87:430–456

    Article  Google Scholar 

  • Elser JJ, Kyle M, Steger L, Nydick KR, Baron JS (2009) Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90:3062–3073

    Article  Google Scholar 

  • Flössner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden

    Google Scholar 

  • Flynn WW (1968) The determination of low-levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227

    Article  Google Scholar 

  • Fryer G (1968) Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Phil Trans R Soc Lond B 254:221–385

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hausmann S, Lotter AF, van Leeuwen JFN, Ohlendorf C, Lemcke G, Grönlund E, Sturm M (2002) Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 12:279–289

    Article  Google Scholar 

  • Heiri O, Lotter AF (2003) 9,000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J Paleolimnol 30:273–289

    Article  Google Scholar 

  • Heiri O, Lotter AF (2005) Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516

    Article  Google Scholar 

  • Hofmann W (2000) Response of the chydorid faunas to rapid climate changes in four Alpine lakes at different altitudes. Palaeogeogr Palaeoclimatol Palaeoecol 159:281–292

    Article  Google Scholar 

  • Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 10:3–6

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Sclüchter C (2009) Latest pleistocene and Holocene glacier variations in the European Alps. Quat Sci Rev 28:2137–2149

    Article  Google Scholar 

  • Jeppesen E, Christoffersen K, Landkildehus F, Lauridsen T, Amsinck SL, Roget F, Søndergaard M (2001) Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442:329–337

    Article  Google Scholar 

  • Jeppesen E, Meerhof M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Özen A, Olesen JE (2009) Climate change effect on runoff, catchment phosphorous loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  Google Scholar 

  • Kamenik C, Koinig KA, Schmidt R, Appleby PG, Dearing JA, Lami A, Thompson R, Psenner R (2002) Eight hundred years of environmental changes in a high Alpine lake (Gössenköllesee, Tyrol) inferred from sediment records. J Limnol 59:43–52

    Google Scholar 

  • Kamenik C, Szeroczyńska K, Schmidt R (2007) Relationship among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594:33–46

    Article  Google Scholar 

  • Kirilova E, Heiri O, Enters D, Cremer H, Lotter AF, Zolitschka B, Hübener T (2009) Climate-induced changes in the trophic status of a Central European lake. J Limnol 68:71–82

    Article  Google Scholar 

  • Korhola A (1999) Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357–373

    Article  Google Scholar 

  • Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44:603–612

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395–420

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463

    Article  Google Scholar 

  • Luoto TP (2009) Subfossil Chironomidae (Insecta: Diptera) along a latitudinal gradient in Finland: development of a new temperature inference model. J Quat Sci 24:150–158

    Article  Google Scholar 

  • Luoto TP (2010) Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecoll Monogr 80:303–329

    Article  Google Scholar 

  • Luoto TP, Salonen V-P (2010) Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities. Boreal Environ Res 15:1–18

    Google Scholar 

  • Luoto TP, Sarmaja-Korjonen K, Nevalainen L, Kauppila T (2009) A 700 year record of temperature and nutrient changes in a small eutrophied lake in southern Finland. Holocene 19:1063–1072

    Article  Google Scholar 

  • Manca M, DeMott WR (2009) Response of the invertebrate predator Bythotrephes to a climate-linked increase in the duration of a refuge from fish predation. Limnol Oceanogr 54:2506–2512

    Article  Google Scholar 

  • Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP (2005) Recent primary production increases in arctic lakes. Geophys Res Lett 32:L19715. doi:10.1029/2005GL023693

    Article  Google Scholar 

  • Millet L, Arnaud F, Heiri O, Magny M, Verneaux V, Desmet M (2009) Late-Holocene summer temperature reconstruction from chirnomid assemblages of Lake Anterne, northern French Alps. Holocene 19:317–328

    Article  Google Scholar 

  • Millet L, Giguet-Covex C, Verneaux V, Druart J-C, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake specific reference state. J Paleolimnol 44:963–978

    Article  Google Scholar 

  • Nesje A, Dahl SO (2001) The Greenland 8,200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. J Quat Sci 16:155–166

    Article  Google Scholar 

  • Nevalainen L (2011) Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676:9–22

    Article  Google Scholar 

  • Nevalainen L (2012) Distribution of benthic microcrustaceans along a water depth gradient in an Austrian Alpine lake—sedimentary evidence for niche separation. Limnologica 42:65–71

    Article  Google Scholar 

  • Nevalainen L, Luoto TP, Levine S, Manca M (2011) Modern and pre-Industrial Age distributions of Cladocera in Italian and Swiss Alpine lakes. Hydrobiologia 676:173–185

    Article  Google Scholar 

  • Nicholls KH, Michalski MFP, Gibson W (1996) An experimental demonstration of trophic interactions affecting water quality of Rice Lake, Ontario (Canada). Hydrobiologia 319:73–85

    Article  Google Scholar 

  • Niedrist G, Tasser E, Lüth C, Dalla Via J, Tappeiner U (2009) Plant diversity declines with recent land use changes in European Alps. Plant Ecol 202:195–210

    Article  Google Scholar 

  • Parker BR, Vinebrooke RD, Schindler D (2008) Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci USA 105:12927–12931

    Article  Google Scholar 

  • Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw Biol 46:1529–1551

    Article  Google Scholar 

  • Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennioum. Can J Fish Aquat Sci 58:18–29

    Article  Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358

    Article  Google Scholar 

  • Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi-proxy core study of the last 7,000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120

    Article  Google Scholar 

  • Schmidt R, Kamenik C, Roth M (2007) Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Autrian Alps. J Paleolimnol 38:541–554

    Article  Google Scholar 

  • Schmidt R, Roth M, Tessadri R, Weckström K (2008) Disentangling late-Holocene climate and land use impacts on an Autrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers. J Paleolimnol 40:453–469

    Article  Google Scholar 

  • Shuman B (2003) Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. J Paleolimnol 30:371–385

    Article  Google Scholar 

  • Smol JP, Douglas M (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley B, Laing T, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot É, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in Arctic lake ecosystems. Proc Natl Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, USA

  • von Gunten L, Heiri O, Bigler C, van Leeuwen J, Casty C, Lotter AF, Sturm M (2008) Seasonal temperatures for the past ~400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland). J Paleolimnol 39:283–299

    Article  Google Scholar 

  • Whiteside MC, Williams JB, White CP (1978) Seasonal abundance and pattern of chydorids, Cladocera in mud and vegetative habitats. Ecology 59:1177–1188

    Article  Google Scholar 

  • Wiederholm T (1980) The use of benthos in lake monitoring. J Water Pollut Control Fed 52:537–543

    Google Scholar 

  • Wiederholm T (ed) (1983) Chironomidae of the Holarctic region: keys and diagnoses. Part 1. Larvae. In: Entomologica Scandinavica Supplement. Borgströms Tryckeri AB, Motala, Sweden

  • Willemse NW, Törnqvist TE (1999) Holocene century-scale temperature variability from West Greenland lake records. Geology 27:580–584

    Article  Google Scholar 

  • Winfield IJ, Beanb CW, Hewitta DP (2002) The relationship between spatial distribution and diet of Arctic charr, Salvelinus alpinus, in Loch Ness, UK. Environ Biol Fishes 64:63–73

    Article  Google Scholar 

  • Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7

    Article  Google Scholar 

  • Wright D, Shapiro J (1990) Refuge availability: a key to understanding the summer disappearance of Daphnia. Freshw Biol 24:43–62

    Article  Google Scholar 

  • Zink D, Gassner H, Rinnerthaler M, Jäger P, Patzner RA (2007) Application of population size structure indices to Arctic charr Salvelinus alpine (L.) in Alpine lakes in Austria. Ecol Freshw Fish 16:54–63

    Article  Google Scholar 

Download references

Acknowledgments

This study is a contribution to EGGER (Kone Foundation, L. Nevalainen), ILMAVEIVI (Academy of Finland, grant # 250343, T. P. Luoto), and DETECTIVE (Austrian Academy of Sciences, Nationalkomitee Alpenforschung) projects. We sincerely thank Hannes Höllerer, Rainer Kurmayer, Thomas Weisse, and Ulrike Koll for their help with fieldwork and Johann Knoll for preparing the sediment samples for microfossil analyses and performing the LOI analysis. Additionally, special thanks go to Dr. Rainer Kurmayer for providing the limnological data on Lake Oberer Landschitzsee and Dr. Kay Van Damme for discussions about Alona ecology. We thank two anonymous reviewers and Dr. Oliver Heiri for their valuable and constructive comments on the manuscript and Dr. Mark Brenner for editorial remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Nevalainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevalainen, L., Luoto, T.P. Faunal (Chironomidae, Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps. J Paleolimnol 48, 711–724 (2012). https://doi.org/10.1007/s10933-012-9640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9640-3

Keywords

Navigation