Skip to main content

Advertisement

Log in

Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica content, bulk density, and grain-size distribution indicate a dynamic history of Holocene climate variability. The evidence suggests a warm early Holocene from 10 to 6 ka, followed by the onset of Neoglaciation in the two drainage basins, beginning between 4.5 and 4.0 ka. During the past 2 ka, the glacial landforms and lacustrine sediments from the two valleys record a remarkably similar history of glaciation, with two primary advances, one during the first millennium AD, from ~500 to 800 AD, and the second during the Little Ice Age (LIA) from ~1400 to 1900 AD. During the LIA, the reconstructed equilibrium-line altitude in the region was no more than 83 ± 44 m (n = 21) lower than the modern, which is based on the extent of glaciers during 1978. Differences between the summer temperature inferred from the biogenic-silica content and the evidence for glacial advances and retreats suggest a period of increased winter precipitation from 1300 to 1500 AD, and reduced winter precipitation from 1800 to 1900 AD, likely associated with variability in the strength of the Aleutian Low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson L, Abbott MB, Finney BP, Edwards ME (2005) Palaeohydrology of the southwest Yukon territory, Canada, based on multiproxy analyses of lake sediment cores from a depth transect. Holocene 15:1172–1183. doi:10.1191/0959683605hl889rp

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WS, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 172–203

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi:10.1016/S0341-8162(78)80002-2

    Article  Google Scholar 

  • Bakke J, Lie Ø, Nesje A, Dahl SO, Paasche Ø (2005) Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway. Holocene 15:161–176. doi:10.1191/0959683605hl797rp

    Article  Google Scholar 

  • Barclay DJ, Wiles GC, Calkin PE (2003) An 850 year record of climate and fluctuations of the iceberg-calving Nellie Juan Glacier, south central Alaska, U.S.A. Ann Glaciol 36:51–56. doi:10.3189/172756403781816419

    Article  Google Scholar 

  • Brázdil R, Pfister C, Wanner H, Storch HV, Luterbacher JR (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430. doi:10.1007/s10584-005-5924-1

    Article  Google Scholar 

  • Calkin PE, Wiles GC, Barclay DJ (2001) Holocene coastal glaciation of Alaska. Quat Sci Rev 20:449–461. doi:10.1016/S0277-3791(00)00105-0

    Article  Google Scholar 

  • Daigle TA, Kaufman DS (2008) Holocene climate inferred from glacier extent, lake sediment and tree rings at Goat Lake, Kenai Mountains, Alaska, USA. J Quat Sci. doi:10.1002/jqs.1166

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long term context for late twentieth century warming. J Geophys Res 111:D03103. doi:10.1029/2005JD006352

    Article  Google Scholar 

  • Davi N, Jacoby G, Wiles G (2003) Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quat Res 60:252–262. doi:10.1016/j.yqres.2003.07.002

    Article  Google Scholar 

  • Denton GH, Karlén W (1973) Lichenometry: its application to Holocene moraine studies in Southern Alaska and Swedish Lapland. Arct Alp Res 5:347–372. doi:10.2307/1550128

    Article  Google Scholar 

  • Dyurgerov M, Meier M, Armstrong RL (2002) Glacier mass balance and regime: data of measurements and analysis. INSTAAR occasional paper no. 55. Institute of Arctic and Alpine Research, University of Colorado, Colorado

  • Fisher DA, Wake C, Kreutz K, Yalcin K, Steig E, Mayewski P, Anderson L, Zheng J, Rupper S, Zdanowicz C, Demuth M, Waszkiewicz M, Dahl-Jensen D, Goto-Azuma K, Bourgeois JB, Koerner RM, Sekerka J, Osterberg E, Abbott MB, Finney BP, Burns SJ (2004) Stable isotope records from Mount Logan, Eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometres: sudden shifts and tropical connections. Géog Phys Quatern 58:337–352

    Google Scholar 

  • Hamilton TD, Thorson RM (1983) The Cordilleran ice sheet in Alaska. In: Porter SC (ed) Late quaternary environments of the United States. Vol. 1, the Late Pleistocene. University of Minnesota Press, University of Minnesota, Minneapolis, pp 38–52

    Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618. doi:10.1191/0959683605hl836rr

    Article  Google Scholar 

  • Hu FS, Ito E, Brown TA, Curry BB, Engstrom DR (2001) Pronounced climatic variations in Alaska during the last two millennia. Proc Natl Acad Sci USA 8:1–5

    Google Scholar 

  • Hughes MK, Diaz HF (1994) Was there a “Medieval Warm Period,” and if so, where and when? Clim Change 26:109–142. doi:10.1007/BF01092410

    Article  Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:1–42. doi:10.1029/2003RG000143

    Article  Google Scholar 

  • Kaplan MR, Wolfe AP, Miller GH (2002) Holocene environmental variability in southern Greenland inferred from lake sediments. Quat Res 58:149–159. doi:10.1006/qres.2002.2352

    Article  Google Scholar 

  • Kathan K (2006) Late Holocene climate fluctuations at Cascade Lake, northeastern Ahklun Mountains, southwestern Alaska. M.S. thesis, Northern Arizona University, Flagstaff, AZ, p 120

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PT, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Ruhland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560. doi:10.1016/j.quascirev.2003.09.007

    Article  Google Scholar 

  • Ketterer ME, Hafer KM, Jones VJ, Appleby PG (2004) Rapid dating of recent sediments in Loch Ness: inductively coupled plasma mass spectrometric measurements of global fallout plutonium. Sci Total Environ 322:221–229. doi:10.1016/j.scitotenv.2003.09.016

    Article  Google Scholar 

  • Leonard EM (1985) Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains. Z Gletsch kd Glazialgeol 21:35–42

    Google Scholar 

  • Levy LB, Kaufman DS, Werner A (2004) Holocene glacier fluctuations, Waskey Lake, northeastern Ahklun Mountains, southwestern Alaska. Holocene 14:185–193. doi:10.1191/0959683604hl675rp

    Article  Google Scholar 

  • Loso MG Summer temperatures during the Medieval Warm Period and Little Ice Age derived from varved proglacial lake sediments in southern Alaska. J Paleolimnol (this volume). doi: 10.1007/s10933-008-9264-9

  • Loso MG, Anderson RS, Anderson SP, Reimer PJ (2006) A 1500-year record of temperature and glacial response inferred from varved Iceberg Lake, southcentral Alaska. Quat Res 66:12–24. doi:10.1016/j.yqres.2005.11.007

    Article  Google Scholar 

  • MacDonald GM, Case RA (2005) Variations in the Pacific Decadal Oscillation over the past millennium. Geophys Res Lett 32:L08703. doi:10.1029/2005GL022478

    Article  Google Scholar 

  • McKay NP (2007) Late Holocene climate at Hallet and Greyling Lakes, central Chugach Range, south-central Alaska. M.S. thesis, Northern Arizona University, Flagstaff, AZ, p 96

  • McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophys Res Lett 35:L05709. doi:10.1029/2007GL032876

    Article  Google Scholar 

  • Meier MF, Post AS (1962) Recent variations in mass net budgets of glaciers in western North America. IASH Publ 58:63–77

    Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W, Lauritzen SE (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi:10.1038/nature03265

    Article  Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1415–1426. doi:10.1016/0198-0149(89)90092-7

    Article  Google Scholar 

  • Nesje A, Dahl SO, Lie Ø (2004) Holocene millennial-scale summer temperature variability inferred from sediment parameters in a non-glacial mountain lake: Danntjørn, Jotunheimen, central southern Norway. Quat Sci Rev 23:2183–2205. doi:10.1016/j.quascirev.2004.08.015

    Article  Google Scholar 

  • Noon PE, Birks HJB, Jones VJ, Ellis-Evans JC (2000) Quantitative models for reconstructing catchment ice-extent using physical–chemical characteristics of lake sediments. J Paleolimnol 25:375–392. doi:10.1023/A:1011193401627

    Article  Google Scholar 

  • Osborn G, Menounos B, Koch J, Clague JJ, Vallis V (2007) Multi-proxy record of Holocene glacial history of the Spearhead and Fitzsimmons ranges, southern Coast Mountains, British Columbia. Quat Sci Rev 26:479–493. doi:10.1016/j.quascirev.2006.09.003

    Article  Google Scholar 

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311:841–844. doi:10.1126/science.1120514

    Article  Google Scholar 

  • Papineau JM (2001) Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int J Climatol 21:1577–1592. doi:10.1002/joc.686

    Article  Google Scholar 

  • Rodionov SN, Overland JE, Bond NA (2005) The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification. J Clim 18:160–177. doi:10.1175/JCLI3253.1

    Article  Google Scholar 

  • Schiff CJ, Kaufman DS, Wolfe AP, Dodd J, Sharp Z Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. J Paleolimnol (this volume). doi: 10.1007/s10933-008-9261-z

  • Solomina O, Calkin PE (2003) Lichenometry as applied to moraines in Alaska, USA, and Kamchatka, Russia. Arct Antarct Alp Res 35:129–143. doi:10.1657/1523-0430(2003)035[0129:LAATMI]2.0.CO;2

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Wiles GC, Calkin PE (1994) Late Holocene, high-resolution glacial chronologies and climate, Kenai Mountains, Alaska. Geol Soc Am Bull 106:281–303. doi:10.1130/0016-7606(1994)106<0281:LHHRGC>2.3.CO;2

    Article  Google Scholar 

  • Wiles GC, Barclay DJ, Calkin PE (1999) Tree-ring-dated Little Ice Age histories of maritime glaciers from western Prince William Sound. Holocene 9:163–173. doi:10.1191/095968399671927145

    Article  Google Scholar 

  • Wiles GC, Barclay DJ, Calkin PE, Lowell TV (2008) Century to millennial-scale temperature variations for the last two thousand years indicated from glacial geologic records of southern Alaska. Glob Planet Change 60:115–125. doi:10.1016/j.gloplacha.2006.07.036

    Article  Google Scholar 

  • Willemse NW, Törnquist TE (1999) Holocene century-scale temperature variability from West Greenland lake records. Geology 27:580–584. doi:10.1130/0091-7613(1999)027<0580:HCSTVF>2.3.CO;2

    Article  Google Scholar 

  • Wilson R, Wiles G, D’Arrigo R, Zweck C (2007) Cycles and shifts: 1300 years of multi-decadal temperature variability in the Gulf of Alaska. Clim Dyn 28:425–440. doi:10.1007/s00382-006-0194-9

    Article  Google Scholar 

  • Wolfe AP, Miller GH, Olsen CA, Forman SL, Doran PT, Holmgren SU (2004) Geochronology of high latitude lake sediments. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic Lakes. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 19–52

    Chapter  Google Scholar 

  • Yu Z, Walker KN, Evenson EB, Hajdas I (2008) Lateglacial and early Holocene climate oscillations in the Matanuska Valley, south-central Alaska. Quat Sci Rev 27:148–161. doi:10.1016/j.quascirev.2007.02.020

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (ARC-0455043 and ATM-0318341) as a contribution to the ARCSS 2 kyr project, and the Geological Society of America. The Alaska Volcano Observatory (K. Wallace) contributed to the cost of the 14C analyses. We thank A. Werner, C. Schiff, T. Daigle, C. Kassel, K. Kathan, J. Bright, and J. Weiss for their assistance in the field and laboratory. Input from R.S. Anderson, J. Sample, A. Werner, and an anonymous reviewer improved this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell S. Kaufman.

Additional information

This is one of fourteen papers published in a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, N.P., Kaufman, D.S. Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska. J Paleolimnol 41, 143–159 (2009). https://doi.org/10.1007/s10933-008-9260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9260-0

Keywords

Navigation