Skip to main content
Log in

Interaction of Cecropin A (1–7) Analogs with DNA Analyzed by Multi-spectroscopic Methods

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cecropin A (1–7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1–7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1–7) and its analogs with DNA was studied using ultraviolet–visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105  L mol−1 compared to original peptide cecropin A (1–7) of 3.73 × 104  L mol−1. The results of antimicrobial experiments with cecropin A (1–7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1–7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murray CJL, Ikuta KS, Sharara F et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399(10325):629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  2. Bombaywala S, Mandpe A, Paliya S, Kumar S (2021) Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. Environ Sci Pollut Res 28(20):24889–24916. https://doi.org/10.1007/s11356-021-13143-x

    Article  CAS  Google Scholar 

  3. Larsson DJ, Flach CF (2022) Antibiotic resistance in the environment. Nat Rev Microbiol 20(5):257–269. https://doi.org/10.1038/s41579-021-00649-x

    Article  CAS  PubMed  Google Scholar 

  4. Nohl A, Hamsen U, Jensen KO et al (2020) Incidence, impact and risk factors for multidrug-resistant organisms (MDRO) in patients with major trauma: a European Multicenter Cohort Study. Eur J Trauma Emerg Surg 48:659–665. https://doi.org/10.1007/s00068-020-01545-4

    Article  PubMed  Google Scholar 

  5. Ulery BD (2016) SNAPPy solution for fighting drug-resistant bacteria. Sci Transl Med 8(360):360164–360164. https://doi.org/10.1126/scitranslmed.aai9161

    Article  Google Scholar 

  6. Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I (2022) Host defence peptides: a potent alternative to combat antimicrobial resistance in the era of the covid-19 pandemic. Antibiotics 11(4):475. https://doi.org/10.3390/antibiotics11040475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Song J, Yang Z et al (2019) Antimicrobial peptides with high proteolytic resistance for combating gram-negative bacteria. J Med Chem 62(5):2286–2304. https://doi.org/10.1021/acs.jmedchem.8b01348

    Article  CAS  PubMed  Google Scholar 

  8. Magana M, Pushpanathan M, Santos AL (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20(9):e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3

    Article  CAS  PubMed  Google Scholar 

  9. Yang L, Sun Y, Xu Y et al (2020) Antibacterial peptide BSN-37 kills extra-and intra-cellular salmonella enterica serovar typhimurium by a nonlytic mode of action. Front Microbiol 11:174. https://doi.org/10.3389/fmicb.2020.00174

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides–advances in development of therapeutic applications. Life Sci 260:118407. https://doi.org/10.1016/j.lfs.2020.118407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhong G, Cheng J, Liang ZC et al (2017) Short synthetic β-sheet antimicrobial peptides for the treatment of multidrug-resistant pseudomonas aeruginosa burn wound infections. Adv Healthcare Mater 6(7):1601134. https://doi.org/10.1002/adhm.201601134

    Article  CAS  Google Scholar 

  12. Zhang R, Fan X, Jiang X, Zou M, Xiao H, Wu G (2020) Multiple mechanisms of the synthesized antimicrobial peptide TS against Gram-negative bacteria for high efficacy antibacterial action in vivo. Molecules 26(1):60. https://doi.org/10.3390/molecules26010060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Luo L, Sun X, Ma A (2021) Bioactive peptides: a promising alternative to chemical preservatives for food preservation. J Agric Food Chem 69(42):12369–12384. https://doi.org/10.1021/acs.jafc.1c04020

    Article  CAS  PubMed  Google Scholar 

  14. Datta S, Roy A (2021) Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther 27:555–577. https://doi.org/10.1007/S10989-020-10110-X

    Article  CAS  Google Scholar 

  15. Spänig S, Heider D (2019) Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Mining 12(1):1–29. https://doi.org/10.1186/s13040-019-0196-x

    Article  Google Scholar 

  16. Wang M, Lin J, Sun Q, Zheng K, Ma Y, Wang J (2019) Design, expression, and characterization of a novel cecropin A-derived peptide with high antibacterial activity. Appl Microbiol Biotechnol 103:1765–1775. https://doi.org/10.1007/s00253-018-09592-z

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Wang L, Yuan L, Du H, Pan B, Lu K (2022) Antimicrobial peptides with rigid linkers against gram-negative bacteria by targeting lipopolysaccharide. J Agric Food Chem 70(50):15903–15916. https://doi.org/10.1021/acs.jafc.2c05921

    Article  CAS  PubMed  Google Scholar 

  18. Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Fortuna M, Caselli F, Scalise G (2000) In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically. Antimicrob Agents Chemother 44(6):1694–1696. https://doi.org/10.1128/aac.44.6.1694-1696.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gagnon MC, Strandberg E, Grau-Campistany A et al (2017) Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry 56(11):1680–1695. https://doi.org/10.1021/acs.biochem.6b01071

    Article  CAS  PubMed  Google Scholar 

  20. Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B 124:1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  21. Jaumot J, Gargallo R (2012) Experimental methods for studying the interactions between G-quadruplex structures and ligands. Curr Pharm Des 18(14):1900–1916. https://doi.org/10.2174/138161212799958486

    Article  CAS  PubMed  Google Scholar 

  22. Zhao D, Ma L, Lu K, Wu J, He J (2015) Syntheses of valpromide dipeptide derivatives and interactions of derivatives with ctDNA. Res Chem Intermed 41:8591–8601. https://doi.org/10.1007/s11164-014-1913-1

    Article  CAS  Google Scholar 

  23. Zhou X, Zhang G, Pan J (2015) Groove binding interaction between daphnetin and calf thymus DNA. Int J Biol Macromol 74:185–194. https://doi.org/10.1016/j.ijbiomac.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  24. Charak S, Jangir DK, Tyagi G, Mehrotra R (2011) Interaction studies of Epirubicin with DNA using spectroscopic techniques. J Mol Struct 1000(1–3):150–154. https://doi.org/10.1016/j.molstruc.2011.06.013

    Article  CAS  Google Scholar 

  25. McKeever C, Kaiser M, Rozas I (2013) Aminoalkyl derivatives of guanidine diaromatic minor groove binders with antiprotozoal activity. J Med Chem 56(3):700–711. https://doi.org/10.1021/jm301614w

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Turro NJ, Tomalia DA (2000) Using ethidium bromide to probe the interactions between DNA and dendrimers. Langmuir 16(1):15–19. https://doi.org/10.1021/la981429v

    Article  CAS  Google Scholar 

  27. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170. https://doi.org/10.1021/bi00745a020

    Article  CAS  PubMed  Google Scholar 

  28. Bi S, Zhang H, Qiao C, Sun Y, Liu C (2008) Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim Acta Part 69(1):123–129. https://doi.org/10.1016/j.saa.2007.03.017

    Article  CAS  Google Scholar 

  29. Sarwar T, Rehman SU, Husain MA, Ishqi HM, Tabish M (2015) Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies. Int J Biol Macromol 73:9–16. https://doi.org/10.1016/j.ijbiomac.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  30. Abdelhameed AS, Bakheit AH, AlRabiah HK, Hassan ES, Almutairi FM (2019) Molecular interactions of AL3818 (anlotinib) to human serum albumin as revealed by spectroscopic and molecular docking studies. J Mol Liq 273:259–265. https://doi.org/10.1016/j.molliq.2018.10.025

    Article  CAS  Google Scholar 

  31. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415. https://doi.org/10.1093/nar/gkl655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. https://doi.org/10.1038/nrg3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 21(8):459–474. https://doi.org/10.1038/s41580-020-0236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725. https://doi.org/10.1093/nar/gkp026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 21708005, 21572046], Science and Technology Foundation of Henan Province [Grant No. 222102310545], Cultivation Programme for Young Backbone Teachers in Henan University of Technology [Grant No. 21420111] and National Pharmaceutical Care Foundation of China Medicine Education Association [Grant No. CMEAPC2023016]. We thank Figdraw (www.figdraw.com) for expert assistance in the graphical abstract drawing.

Author information

Authors and Affiliations

Authors

Contributions

Libo Yuan: Supervision, Methodology, Writing—review and editing. Ke Wang: Methodology, Writing—original draft preparation. Yuan Fang: Supervision, Antimicrobial experiments. Xiujuan Xu: Peptides synthesis. Yingcun Chen: Peptides synthesis. Dongxin Zhao: Spectral data analysis. Kui Lu: Supervision, Writing—review and editing.

Corresponding authors

Correspondence to Libo Yuan, Yuan Fang or Kui Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 649 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Wang, K., Fang, Y. et al. Interaction of Cecropin A (1–7) Analogs with DNA Analyzed by Multi-spectroscopic Methods. Protein J 43, 274–282 (2024). https://doi.org/10.1007/s10930-023-10177-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10177-7

Keywords

Navigation