Skip to main content
Log in

Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family – GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug’s action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 2b
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization (2022) Global Tuberculosis report 2022. World Health Organization, Geneva

    Google Scholar 

  2. Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740. https://doi.org/10.1084/jem.134.3.713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crowle AJ, Dahl R, Ross E, May MH (1991) Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59:1823–1831. https://doi.org/10.1128/iai.59.5.1823-1831.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deretic V, Fratti RA (1999) Mycobacterium tuberculosis phagosome. Mol Microbiol 31:1603–1609. https://doi.org/10.1046/j.1365-2958.1999.01279.x

    Article  CAS  PubMed  Google Scholar 

  5. Parra M, Cadieux N, Pickett T et al (2006) A PE protein expressed by Mycobacterium avium is an effective T-cell immunogen. Infect Immun 74:786–789. https://doi.org/10.1128/IAI.74.1.786-789.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pablo S, Noemí Y, Mercedes A et al (2007) Mycobacterium tuberculosis-Induced Gamma Interferon production by natural killer cells requires Cross talk with Antigen-presenting cells Involving Toll-Like receptors 2 and 4 and the mannose receptor in Tuberculous Pleurisy. Infect Immun 75:5325–5337. https://doi.org/10.1128/IAI.00381-07

    Article  CAS  Google Scholar 

  7. Wei J, Dahl JL, Moulder JW et al (2000) Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J Bacteriol 182:377–384. https://doi.org/10.1128/JB.182.2.377-384.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lella RK, Sharma C (2007) Eis (enhanced intracellular survival) protein of < em > Mycobacterium tuberculosis disturbs the Cross Regulation of T-cells *. J Biol Chem 282:18671–18675. https://doi.org/10.1074/jbc.C600280200

    Article  CAS  PubMed  Google Scholar 

  9. Hoon KK, Ri AD, Jinsu S et al (2012) Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proceedings of the National Academy of Sciences 109:7729–7734. https://doi.org/10.1073/pnas.1120251109

  10. Yoon HJ, Kim KH, Yang JK et al (2013) A docking study of enhanced intracellular survival protein from Mycobacterium tuberculosis with human DUSP16/MKP-7. J Synchrotron Radiat 20:929–932. https://doi.org/10.1107/S0909049513021341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ganaie AA, Lella RK, Solanki R, Sharma C (2011) Thermostable Hexameric form of Eis (Rv2416c) protein of M. Tuberculosis plays an important role for enhanced intracellular survival within macrophages. PLoS ONE 6:e27590

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Logesh R, Lavanya V, Jamal S, Ahmed N (2022) Designing of a chimeric vaccine using EIS (Rv2416c) protein against Mycobacterium tuberculosis H37Rv: an Immunoinformatics Approach. Appl Biochem Biotechnol 194:187–214. https://doi.org/10.1007/s12010-021-03760-0

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed S, Sony SA, Chowdhury MB et al (2020) Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: a combination of in-silico and in-vitro study. Sci Rep 10:19381. https://doi.org/10.1038/s41598-020-76355-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garzan A, Willby MJ, Green KD et al (2016) Discovery and optimization of two eis inhibitor families as Kanamycin adjuvants against Drug-Resistant M. Tuberculosis. ACS Med Chem Lett 7:1219–1221. https://doi.org/10.1021/acsmedchemlett.6b00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anand S, Ganaie AA, Sharma C (2019) Differential thermal stability, conformational stability and unfolding behaviour of Eis proteins from Mycobacterium smegmatis and Mycobacterium tuberculosis. PLoS ONE 14:e0213933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Houghton JL, Biswas T, Chen W et al (2013) Chemical and Structural insights into the regioversatility of the Aminoglycoside Acetyltransferase Eis. ChemBioChem 14:2127–2135. https://doi.org/10.1002/cbic.201300359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sarno R, Ha H, Weinsetel N, Tolmasky ME (2003) Inhibition of aminoglycoside 6’-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides. Antimicrob Agents Chemother 47:3296–3304. https://doi.org/10.1128/AAC.47.10.3296-3304.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Green KD, Chen W, Garneau-Tsodikova S (2012) Identification and characterization of inhibitors of the aminoglycoside resistance acetyltransferase Eis from Mycobacterium tuberculosis. ChemMedChem 7:73–77. https://doi.org/10.1002/CMDC.201100332

    Article  CAS  PubMed  Google Scholar 

  19. Willby MJ, Green KD, Gajadeera CS et al (2016) Potent inhibitors of acetyltransferase Eis overcome Kanamycin Resistance in Mycobacterium tuberculosis. ACS Chem Biol 11:1639–1646. https://doi.org/10.1021/ACSCHEMBIO.6B00110/SUPPL_FILE/CB6B00110_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garzan A, Willby MJ, Green KD et al (2016) Sulfonamide-based inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis. J Med Chem 59:10619–10628. https://doi.org/10.1021/ACS.JMEDCHEM.6B01161/SUPPL_FILE/JM6B01161_SI_002.CSV

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garzan A, Willby MJ, Ngo HX et al (2017) Combating enhanced intracellular survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis inhibitors. ACS Infect Dis 3:302–309. https://doi.org/10.1021/ACSINFECDIS.6B00193/SUPPL_FILE/ID6B00193_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daigle DM, McKay GA, Wright GD (1997) Inhibition of Aminoglycoside Antibiotic Resistance Enzymes by protein kinase inhibitors *. J Biol Chem 272:24755–24758. https://doi.org/10.1074/JBC.272.40.24755

    Article  CAS  PubMed  Google Scholar 

  23. Zaunbrecher MA, Sikes RD, Metchock B et al (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferase Eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S 106:20004–20009. https://doi.org/10.1073/pnas.0907925106

    Article  ADS  CAS  Google Scholar 

  24. Ameenudeen S, Waseem M, S. H (2023) Identification of potential phytochemicals and their inhibitory effect on the PERK receptor-mediated UPR pathway for neuronal Disease regulation: an in silico insight. J Biomol Struct Dynamics 0:1–9. https://doi.org/10.1080/07391102.2023.2242495

    Article  CAS  Google Scholar 

  25. Irfan N, Vaithyanathan P, Anandaram H et al (2023) Active and allosteric site binding MM-QM studies of Methylidene tetracyclo derivative in PCSK9 protein intended to make a safe antilipidemic agent. J Biomol Struct Dynamics 0:1–10. https://doi.org/10.1080/07391102.2023.2239928

    Article  CAS  Google Scholar 

  26. Iwaloye O, Elekofehinti OO, Oluwarotimi EA et al (2020) Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies. In Silico Pharmacol 8:2. https://doi.org/10.1007/s40203-020-00054-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Siddiqui T, Zia MK, Ali SS et al (2018) Insight into the interactions of proteinase inhibitor- alpha-2-macroglobulin with hypochlorite. Int J Biol Macromol 117:401–406. https://doi.org/10.1016/j.ijbiomac.2018.05.112

    Article  CAS  PubMed  Google Scholar 

  28. Huang H, Zhao M (2008) Changes of trypsin in activity and secondary structure induced by complex with trypsin inhibitors and tea polyphenol. Eur Food Res Technol 2:361–365. https://doi.org/10.1007/s00217-007-0729-2

    Article  CAS  Google Scholar 

  29. Lavanya V, Anil Kumar B, Jamal S et al (2017) Sub-micellar Concentration of Sodium Dodecyl Sulphate prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin. Protein J 36:17–27. https://doi.org/10.1007/s10930-017-9694-1

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Green KD, Johnson BR, Garneau-Tsodikova S (2015) Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts. Antimicrob Agents Chemother 59:4148–4156. https://doi.org/10.1128/AAC.00885-15/SUPPL_FILE/ZAC007154140SO1.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Analise ZM, David SR, Beverly M et al (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferase Eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci 106:20004–20009. https://doi.org/10.1073/pnas.0907925106

    Article  ADS  CAS  Google Scholar 

  32. Chen W, Biswas T, Porter VR et al (2011) Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proceedings of the National Academy of Sciences 108:9804–9808. https://doi.org/10.1073/pnas.1105379108

  33. Houghton JL, Green KD, Pricer RE et al (2013) Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. J Antimicrob Chemother 68:800–805. https://doi.org/10.1093/jac/dks497

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y-H, Yang JT, Martinez HM (2002) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. In: ACS Publications. https://doi.org/10.1021/bi00772a015. Accessed 14 Mar 2023

    Article  Google Scholar 

  35. Tsodikov OV, Green KD, Garneau-Tsodikova S (2014) A Random Sequential mechanism of Aminoglycoside Acetylation by Mycobacterium tuberculosis Eis Protein. PLoS ONE 9:e92370. https://doi.org/10.1371/journal.pone.0092370

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nawaz SA, Ayaz M, Brandt W et al (2011) Cation–π and π–π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochem Biophys Res Commun 404:935–940. https://doi.org/10.1016/j.bbrc.2010.12.084

    Article  CAS  PubMed  Google Scholar 

  37. Cortopassi WA, Kumar K, Paton RS (2016) Cation–π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity. Org Biomol Chem 14:10926–10938. https://doi.org/10.1039/C6OB02234K

    Article  CAS  PubMed  Google Scholar 

  38. Srivastava S, Somasagara RR, Hegde M et al (2016) Quercetin, a natural flavonoid interacts with DNA, arrests Cell cycle and causes Tumor Regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:24049. https://doi.org/10.1038/srep24049

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quecan BXV, Santos JTC, Rivera MLC et al (2019) Effect of Quercetin Rich Onion extracts on bacterial quorum sensing. Front Microbiol 10

  40. Chen Y, Xiao P, Ou-Yang D-S et al (2009) Simultaneous action of the flavonoid quercetin on cytochrome P450 (cyp) 1a2, Cyp2a6, N-Acetyltransferase and xanthine oxidase activity in healthy volunteers. Clin Exp Pharmacol Physiol 36:828–833. https://doi.org/10.1111/j.1440-1681.2009.05158.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

As part of the ICMR-SRF program, Logesh Radhakrishnan acknowledges the ICMR, New Delhi, for providing an SRF fellowship (File No. 2020-0056/CMB-BMS dated 12/02/2021). For permitting the utilization of Far UV-CD equipment, the authors are grateful to Dr. Athi N. Naganathan of the IIT, Madaras. The authors thank the BSA Crescent Institute of Science and Technology for providing lab space and facilities.

Author information

Authors and Affiliations

Authors

Contributions

NA and SJ conceived and designed the methodology and research. LR and RD conducted the experiments and NA and IN analyzed the data. LR, SJ and NA wrote the manuscript analyzed the final results. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Neesar Ahmed.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors state that they don’t have any conflicts of interest concerning publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, L., Dani, R., Navabshan, I. et al. Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin. Protein J 43, 12–23 (2024). https://doi.org/10.1007/s10930-023-10165-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10165-x

Keywords

Navigation