Skip to main content
Log in

Crosslinking and Reconstitution Approaches to Study Protein Transport

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

To identify the translocation components in cells, and to understand how they function in protein transport and membrane insertion, a variety of techniques have been used such as genetics, biochemistry, structural biology and single molecule methods. In particular, site-directed crosslinking between the client proteins and components of the translocation machineries have contributed significantly in the past and will do so in the future. One advantage of this technology is that it can be applied in vivo as well as in vitro and a comparison of the two approaches can be made. Also, the in vivo techniques allow time-dependent protocols which are essential for studying cellular pathways. Protein purification and reconstitution into proteoliposomes are the gold standard for studying membrane-based transport and translocation systems. With these biochemically defined approaches the function of each component in protein transport can be addressed individually with a plethora of biophysical techniques. Recently, the use of nanodiscs for reconstitution has added another extension of this reductionistic approach. Fluorescence based studies, cryo-microscopy and NMR spectroscopy have significantly added to our understanding how proteins move into and across membranes and will do this also in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DOPC:

Di-oleoyl-glycero-3-phosphocholine

FCS:

Fluorescence correlation spectroscopy

FRET:

Förster resonance energy transfer

NMR:

Nuclear magnetic resonance

SDS-PAGE:

Sodium dodecylsulfat-polyacrylgel electrophoresis

TMD-Phe:

Trifluoro-methyl-diazirinyl-phenylalanine

References

  1. Palade G (1955) Studies on the endoplasmic reticulum. II. Simple dispositions in cells in situ. J Biophys Biochem Cytol 1:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palade G, Siekevitz P (1956) Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol 2:5171–5200

    Google Scholar 

  3. Sabatini DD, Taschiro Y, Palade GE (1966) On the attachment of ribosomes to microsomal membranes. J Mol Biol 19:503–524

    Article  CAS  PubMed  Google Scholar 

  4. Blobel G, Sabatini DD (1971) Ribosome-membrane interaction in eukaryotic cells. In: Mansson LA (ed) Biomembranes. Plenum Press, New York, pp 193–195

    Chapter  Google Scholar 

  5. Walter P, Jackson RC, Marcus MM et al (1979) Tryptic dissection and reconstitution of translocation activity for nascent presecretory proteins across microsomal membranes. Proc Natl Acad Sci USA 76:1795–1799

    Article  CAS  PubMed  Google Scholar 

  6. Bassford PJ, Silhavy TJ, Beckwith JR (1979) Use of gene fusion to study secretion of maltose-binding protein into Escherichia coli periplasm. J Bacteriol 139:19–31

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:505–515

    Article  Google Scholar 

  8. Kurzchalia TV, Wiedmann M, Girshovich AS et al (1986) The signal sequence of nascent preprolactin interacts with the 54 K polypeptide of the signal recognition particle. Nature 320:634–636

    Article  CAS  PubMed  Google Scholar 

  9. Krieg UC, Walter P, Johnson AE (1986) Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc Natl Acad Sci USA 83:8604–8608

    Article  CAS  PubMed  Google Scholar 

  10. Wiedmann M, Kurzchalia TV, Bielka H et al (1987) Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking. J Cell Biol 104:201–208

    Article  CAS  PubMed  Google Scholar 

  11. Müsch A, Wiedmann M, Rapoport TA (1992) Yeast Sec proteins interact with polypeptides traversing the endoplasmic reticulum membrane. Cell 69:343–352

    Article  PubMed  Google Scholar 

  12. Görlich D, Hartmann E, Prehn S et al (1992) A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357:47–52

    Article  PubMed  Google Scholar 

  13. Wiedmann B, Sakai H, Davis TA et al (1994) A protein complex required for signal-sequence-specific sorting and translocation. Nature 370:434–440

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Berndt U, Gölz H et al (2012) NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol Biol Cell 23:3027–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conti BJ, Devaraneni PK, Yang Z et al (2015) Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol Cell 58:269–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sommer N, Junne T, Kalies K et al (2013) TRAP assists membrane protein biogenesis at the mammalian ER membrane. Biochim Biophys Acta 1833:3104–3111

    Article  CAS  PubMed  Google Scholar 

  17. Losfeld ME, Ng BG, Kircher M et al (2014) A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum Mol Genet 23:1602–1605

    Article  CAS  PubMed  Google Scholar 

  18. High S, Martoglio B, Görlich D et al (1993) Site-specific photocross-linking reveals that Sec61p and TRAM contact different regions of a membrane-inserted signal sequence. J Biol Chem 268:45–51

    Google Scholar 

  19. Do H, Falcone D, Lin J et al (1996) The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85:369–378

    Article  CAS  PubMed  Google Scholar 

  20. Urbanus ML, Scotti PA, Froderberg L et al (2001) Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisner G, Koch HG, Beck K et al (2003) Ligand crowding at a nascent signal sequence. J Cell Biol 163:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Houben E, Urbanus ML, Van Der Laan M et al (2002) YidC and SecY mediate membrane insertion of a Type I transmembrane domain. J Biol Chem 277:35880–35886

    Article  CAS  PubMed  Google Scholar 

  23. Kuhn P, Weiche B, Sturm L et al (2011) The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 12:563–578

    Article  CAS  PubMed  Google Scholar 

  24. Sachelaru I, Petriman NA, Kudva R et al (2013) YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem 288:16295–16307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobashi K (1968) Catalytic oxidation of sulfhydryl groups by o-phenanthroline copper complex. Biochim Biophys Acta 158:239–245

    Article  CAS  PubMed  Google Scholar 

  26. Lee GF, Lebert MR, Lilly AA et al (1995) Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo. Proc Natl Acad Sci USA 92:3391–3395

    Article  CAS  PubMed  Google Scholar 

  27. Lynch BA, Koshland DE (1991) Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor of Escherichia coli. Proc Natl Acad Sci USA 88:10402–10406

    Article  CAS  PubMed  Google Scholar 

  28. Sahin-Tóth M, Kaback HR (1993) Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Prot Sci 2:1024–1033

    Article  Google Scholar 

  29. Nagler C, Nagler G, Kuhn A (2007) Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny. J Bacteriol 189:2897–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greene NP, Porcelli I, Buchanan G et al (2007) Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase. J Biol Chem 282:23937–23945

    Article  CAS  PubMed  Google Scholar 

  31. Kneuper H, Maldonado B, Jäger F et al (2012) Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site. Mol Micro 85:945–961

    Article  CAS  Google Scholar 

  32. Bhanu M, Zhao P, Kendall DA (2013) Mapping of the SecA signal peptide binding site and dimeric interface by using the substituted cysteine accessibility method. J Bacteriol 195:4709–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cannon KS, Or E, Clemons WM et al (2013) Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J Cell Biol 169:215–225

    Google Scholar 

  34. Harris CR, Silhavy TJ (1999) Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J Bacteriol 181:3438–3444

    CAS  PubMed  PubMed Central  Google Scholar 

  35. van der Sluis EO, Nouwen N, Koch J et al (2006) Identification of two interaction sites in SecY that are important for the functional interaction with SecA. J Mol Biol 361:839–849

    Article  CAS  PubMed  Google Scholar 

  36. Kaufmann A, Manting EH, Veenendaal AK et al (1999) Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38:9115–9125

    Article  CAS  PubMed  Google Scholar 

  37. Veenendaal AK, van der Does C, Driessen AJ (2001) Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J Biol Chem 276:32559–32566

    Article  CAS  PubMed  Google Scholar 

  38. Erlandson KJ, Miller SB, Nam Y et al (2008) A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455:984–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Whitehouse S, Gold VA, Robson A et al (2012) Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. J Cell Biol 199:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klenner C, Yuan J, Dalbey RE et al (2008) The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. FEBS Lett 582:3967–3972

    Article  CAS  PubMed  Google Scholar 

  41. Yu Z, Koningstein G, Pop A et al (2008) The conserved third transmembrane segment of YidC contacts nascent Escherichia coli inner membrane proteins. J Biol Chem 283:34635–34642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klenner C, Kuhn A (2012) Dynamic disulfide scanning of the membrane-inserting Pf3 coat protein reveals multiple YidC substrate contacts. J Biol Chem 287:3769–3776

    Article  CAS  PubMed  Google Scholar 

  43. Kumazaki K, Kishimoto T, Furukawa A et al (2014) Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4:7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Höhr AIC, Lindau C, Wirth C et al (2018) Membrane protein insertion through a mitochondrial β-barrel gate. Science 359:eaah6834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuipers G, Peschke M, Ismail NB et al (2017) Optimizing E. coli-based membrane protein production using Lemo21(DE3) or pReX and GFP-fusions. Methods Mol Biol 1585:109–126

    Article  CAS  Google Scholar 

  46. Kuhn A, Stiegler N, Schubert AK (2010) Membrane insertion of small proteins. Methods Mol Biol 619:39–62

    Article  CAS  PubMed  Google Scholar 

  47. Nicchitta CV, Blobel G (1990) Assembly of translocation-competent proteoliposomes from detergent-solubilized rough microsomes. Cell 60:259–269

    Article  CAS  PubMed  Google Scholar 

  48. Brundage L, Hendrick JP, Schiebel E et al (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649–657

    Article  CAS  PubMed  Google Scholar 

  49. Tokuda H, Shiozuka K, Mizushima S (1990) Reconstitution of translocation activity for secretory proteins from solubilized components of Escherichia coli. Eur J Biochem 192:583–589

    Article  CAS  PubMed  Google Scholar 

  50. Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–630

    Article  PubMed  Google Scholar 

  51. van der Does C, Swaving J, van Klompenburg W et al (2000) Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase. J Biol Chem 275:2472–2478

    Article  PubMed  Google Scholar 

  52. Gold VA, Robson A, Bao H et al (2010) The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci USA 107:10044–100449

    Article  PubMed  Google Scholar 

  53. Serek J, Bauer-Manz G, Struhalla G et al (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Laan M, Bechtluft P, Kol S et al (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winterfeld S, Imhof N, Roos T et al (2009) Substrate-induced conformational change of the Escherichia coli membrane insertase YidC. Biochem 48:6684–6691

    Article  CAS  Google Scholar 

  56. Imhof N, Kuhn A, Gerken U (2011) Substrate-dependent conformational dynamics of the Escherichia coli membrane insertase YidC. Biochemistry 50:3229–3239

    Article  CAS  PubMed  Google Scholar 

  57. Driessen A (1993) SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. Biochemistry 32:13190–13197

    Article  CAS  PubMed  Google Scholar 

  58. den Blaauwen T, de Wit JG, Gosker H et al (1996) Inhibition of preprotein translocation and reversion of the membrane inserted state of SecA by a carboxyl terminus binding mAb. Biochemistry 36:9159–9168

    Article  Google Scholar 

  59. Natale P, den Blaauwen T, van der Does C et al (2005) Conformational state of the SecYEG-bound SecA probed by single tryptophan fluorescence spectroscopy. Biochemistry 44:6424–6432

    Article  CAS  PubMed  Google Scholar 

  60. Wu ZC, de Keyzer J, Kedrov A et al (2012) Competitive binding of the SecA ATPase and ribosomes to the SecYEG translocon. J Biol Chem 287:7885–7895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ernst S, Schönbauer AK, Bär G et al (2011) YidC-driven membrane insertion of single fluorescent Pf3 coat proteins. J Mol Biol 412:165–175

    Article  CAS  PubMed  Google Scholar 

  62. Kuhn H (1970) Classical aspects of energy transfer in molecular systems. J Chem Phys 53:101–108

    Article  CAS  Google Scholar 

  63. Mori H, Tsukazaki T, Masui R et al (2003) Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J Biol Chem 278:14357–14364

    Google Scholar 

  64. Deville K, Gold VA, Robson A et al (2011) The oligomeric state and arrangement of the active bacterial translocon. J Biol Chem 286:4659–4669

    Article  CAS  PubMed  Google Scholar 

  65. Allen WJ, Corey RA, Oatley P et al (2016) Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. Life 5:15598

    Google Scholar 

  66. Ernst I, Haase M, Ernst S et al (2018) Large conformational changes of a highly dynamic pre-protein binding domain in SecA. Commun Biol 1:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Winterfeld S, Ernst S, Börsch M (2013) Real time observation of single membrane protein insertion events by the Escherichia coli insertase YidC. PLoS ONE 8:e59023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77:1496–1500

    Article  CAS  PubMed  Google Scholar 

  69. Kuhn A, Haase M, Leptihn S (2017) Assisted and Unassisted Protein Insertion into Liposomes. Biophys J 113:1187–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Eva Pross and Maximilian Haase are acknowledged for their help preparing Figs. 1 and 3. Our work was supported by the Deutsche Forschungsgemeinschaft DFG and the Landesstiftung Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kuhn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhn, A. Crosslinking and Reconstitution Approaches to Study Protein Transport. Protein J 38, 229–235 (2019). https://doi.org/10.1007/s10930-019-09842-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09842-7

Keywords

Navigation